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Elastic and inelastic collisions in the Lee model are treated in a dressed-particle picture. The 
procedure by which the renormalization constant Z disappears from the integral equations for the 
transition matrix is studied in detail. A new procedure is given for obtaining the exact transition 
matrix for N - 0 scattering. A hypothetical fermion B is introduced and the decays B -> N + 0, 
B -> V + 0, as well as the decay in the Goldberger-Treiman model are studied in the dressed-particle 
picture. The iterative expansion of the B -> V + 0 decay amplitude is obtained and is shown to 
agree with the renormalized power series for this decay, though such is not the case for B -> N + 0 
decay, or the decay in the Goldberger-Treiman model. It is shown that in the final-state interaction 
of B -> V + 0 decay, there are cancellation effects between one- and two-meson contributions, which 
are crucial in avoiding divergences. 

I. INTRODUCTION 

I N an earlier paper,' a method was presented for 
eliminating the bare-particle n-meson states 

from their role as Hilbert space base vectors in a 
theory of meson scattering from a static source. 
By the application of a scattering formalism due to 
Ekstein,2 and by the formulation of the problem in 
terms of the so-called" asymptotically stationary" 
states, a set of nonlinear integral equations for 
the transition matrix elements was derived. These 
equations were iterated to sixth order to reproduce 
the" renormalized" series expansion for the S matrix, 
in terms of physical parameters, without requiring 
renormalization, or for that matter, any subtractions. 
In this earlier work the charge states of the static 
source itself were represented by means of isotopic 
spin operators. This simplified the problem greatly, 
since it eliminated any formal distinction between 

* Supported by the National Science Foundation and by 
the U. S. Army Research Office (Durham, North Carolina). 

1 K. Haller, Phys. Rev. 120, 1045 (1960). This will hence­
forth be referred to as HI. 

2 H. Ekstein, Phys. Rev. 101,880 (1956). 

dressed- and bare-particle operators, and in fact, 
obviated the necessity of speaking about" nucleon" 
operators at all. In spite of the advantages of this 
procedure from the point of view of simplicity, there 
are still great advantages to be had from generalizing 
this type of treatment by explicitly using dressed­
particle operators for all particles involved in the 
interaction: For one, it is then possible to treat 
weak decays in this type of model theory, whereas 
no change in nucleon number can ever be incorpor­
ated into a purely isotopic spin formalism. Moreover, 
since in a fully relativistic, physically realistic theory, 
isotopic spin operators are certainly inadequate to 
represent fermions, it can be hoped that valuable 
lessons can be learned from writing even a "static 
source" theory3 with dressed-particle operators for 
fermions as well as bosons. The theory chosen for 
this discussion is the Lee model. 4 

3 It is to be noted however, that the theory becomes 
less "static" and richer in content when creation and annihila­
tion operators are used for the fermions. 

4 T. D. Lee, Phys. Rev. 95, 329 (1954). 
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II. THE HAMILTONIAN 

The HamiltonianS for the Lee model is given by 
H = Ho + HI with 

Ho = L a:akvh + m(vtv + ntn) 
k 

and 

HI = - g L u(k)(2wk)-!(vtnak + a:ntv) + omvtv. (1) 
k 

The Hamiltonian allows the primitive vertex 
V t=! N + 8 and the quantum number N (V) + N (8), 
and (the total number of V's and 8's) is a constant 
of motion; the quantum number N (V) + N (N) is 
also a constant of motion. Although in this treatment 
no infinite integrals ever appear so that even with 
u(k) = 1 no divergence problems would arise, 
u(k) is explicitly included, since in this model a 
ghost state arises when no cutoff is introduced.6 

Since the existence or nonexistence of the ghost 
state is not of primary interest in this discussion, 
it will be assumed that u(k) has the properties 
necessary to keep the ghost state from arising, 
and that u(k) = [1; 0] for [k < ko; k > ko]. 

We will now attempt to find a nonsingular trans­
formation S which will be used to generate the 
dressed-particle operators, ni from the bare-particle 
operators Wi by ni = SW,S-l. The Hamiltonian will 
then be written in terms of the dressed instead of 
the bare operators as indicated by H ( ... Wi ••• ) = 

X(· .. n; ... ). We will admit S as a dressing 
operator if, for all creation operators n;, xn; I 0) = 
E,n; I 0), so that all physical particle one-particle 
states are eigenfunctions of the exact Hamiltonian. 
Needless to say, this specification of S is not unique. 
Greenberg and Schweber have discussed unitary 
dressing transformations for the Lee model7

• In the 
case of such unitary transformations, the transformed 
Hamiltonian has an infinite number of terms, a fact 
which would make it unsuitable for the treatment 
intended in this work. 

The dressing operation to be used here is a 
nonunitary one and is adapted from one used by 
Lopuszanskis in a discussion of the Ruijgrok­
Van Hove model. It is given by S = eF II, where 

F = g L u(k)(2w~rta:ntv, 
k 

and where II is a Hermitian operator which is de-

6 For simplicity the N and V particles are assigned the 
same mass. 

e G. Kallen and W. Pauli, Medd. Dansk Mat. Fys 30, 
No.7 (1955). 

7 O. Greenberg and S. Schweber, Nuovo Cimento 8, 
378 (1955). 

8 J. Lopuszanski, Physica 25,745 (1959). See also reference 
(7). 

fined by 
t [ t [II, n] = [II, n ] = II, Ok] = [II, ak 1 = 0, 

The vacuum. is taken to be an eigenfunction of II 
with eigenvalue 1. Application of this transformation 
to the various creation and annihilation operators 
leads to a set of dressed operators. The various 
dressed operators, expressed in terms of bare 
operators are 

t t 
Ak = ak, (2) 

Ak = ak - gu(k)(2w~r!ntv, 

N
t t 

= n, 

Since the transformation S is not unitary, A k , N 
and V are no longer the Hermitian adjoints of A~, 
Nt and vt respectively. We will denote the Hermitian 
adjoints of A:, Nt and vt by (h, ;n, and '0, re­
spectively. The Hamiltonian can now be written in 
terms of the dressed operators as follows: 

H = Xo + Xl with 

Xo = m(VtV + NtN) + L A:AkWk, 
k 

and 

Xl = -gZ-t L: u(k)(2wkr!e-FVtNe+F Ak 
k 

- om VtNtVN - omvtv. (3) 

Elimination of all terms in which two fermion 
annihilation operators follow each other at the 
extreme right (since only one-fermion problems 
will be discussed in this work) leads to 

Xl = -gZ-! L: u(k)(2wkr!V t NA k 
k 

+ g2 L u(k)u(q)(4wkW!r!(NtN - VtV)A!Ak 
k.q 

+ lZ! L: u(k)U(q)U(K)(8wkW!W:r!N
t
V A:A:Ako (4) 

k,q,. 

At this point the mass renormalization om has 
dropped out of the Hamiltonian; it is however 
apparent that Xl, even when written in terms 
of the renormalized coupling constant gp = gzt, 
contains Z explicitly, although no physical quantity 
should contain any reference to Z. This persistence 
of the unphysical Z in the Hamiltonian has been 
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pointed out by various authors.7 
,8 It will be shown 

later in this paper that despite the fact that Z 
appears in the dressed-particle Hamiltonian X, 
when the previously outlined program for deriving 
integral equations for the transition matrix is 
followed, Z systematically disappears from the 
integral equations in an entirely straightforward 
manner. 

III. N - 6 SCATTERING 

The transition matrix for N + Ok ~ N + Oq can 
be written1

•
2 

R(q; k) = (x.v(q) / ~~+)(k», (5) 
where 

~,~+)(k) = N~A: /0) - eX - Ek - if/flxN k), 

and 
t t / XN(q) = (X - m - w.)N Aq 0) 

= -gu(q)(2w.f i [Z-!Vt 
- g L u(K)(2w!)-lN

t A:l /0); . 
from Eq. (2) we have 

x~(q) = - gpu(q) (2w.f! (0/ V. (6) 

The above leads to 

R(q; k) = gpu(q)(2w.r! 

(5a) 

and, when the operator 1 = Ln y"n)(~n is inserted, 
we have 

R(q; k) = gpU(~1 L (0 IVI ~n)(y"n I XN(~». (5b) 
(2w.) n En - m - Wk - ~7J 

The set ~n here consists of dressed one-particle 
states and outgoing scattering states. Due to the 
selection rules that are operative in the Lee model, 
the only nonvanishing contributions to the sum 
are from ~ = / V), and from N - 0 scattering states. 
Equation (5b) can be rewritten as 

R( 
. k) _ g:u(q)u(k) 

q, - ! I 2W.Wk 

tion matrix in this theory) is 

T(q; k) = (0/ <Xqm:JC1A;N
t 

/0) 

- L (0/ (tq;)IX1A:N t 
/O)T(x; k)[w. - Wk - i7Jr' . 

+ (0/ <Xq;)lX1 V
t /0)(0/ 'OX~A:Nt /O)W;l. 

The various vacuum expectation values in this 
equation are all identically 0, as long as the cutoff 
u(q) keeps Z finite. When Z ~ OJ we are again 
faced with indeterminate expressions. We must 
therefore discard this approach. 

Equation (7) can be iterated as was discussed in 
HI. In this case, however, the iteration leads to an 
exact solution. An exact solution of Eq. (7) can also 
be represented by a contour integral. 

To generate the iterative solution, it is most 
convenient to deal with the reactance matrix 
K(q; k) which obeys the equation 

K(q' k) = g!u(q)u(k) 
, 2w!w! 

where P denotes the principal value of the integral. 
Iteration gives 

K (2)(q' k) = g!u(q)u(k) d 
, 2!\,an WqWk 

(the P will be suppressed for the remainder of 
this section). By induction we will now show that 
the nth term is 

K(2n)(q'k) = g;u(q)u(k) 
, 2w!wf 

(9) 

If Eq. (9) is true up to n, then 
_ -'!z J / dK R(q; x)R*(~; x) • (7) 

211" w. - Wk - ~7J K(2n+2)(q' k) = g!u(q)u(k) {(_~)n 
, 2 t t 4 2 Wk 

Incidentally, it is worth noting that in the above WQWk 11" 

treatment, the use of the scattering theory discussed x[n J W~n~I)K2 dK U2
(K) (J p: dp u2(p) )(n-I)]}. 

in (2) is quite necessary. We might try to take w,(w, - Wk) wp(wp - W.) (10) 

advantage of the fact that the asymptotically 
stationary states are eigenfunctions of Xo and invoke 
the more usual scattering theory9 which leads to a 
linear integral equation. For N - 0 scattering, 
the linear integral equation for T(q; k), (the transi-

8 e.g., B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 
469 (1950); M. Gell-Mann and M. L. Goldberger, Phys. Rev. 
91, 398 (1953). 

The expression in the square bracket on the right­
hand side of Eq. (10) can be written 

I = J l dK p2(1) dp~1~1 ... p2(n3 - 1) dp(n - 1) 
w,Wp(1) .,. Wp(n-I) 
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where L<p indicates the sum of the expression as 
written plus all terms obtained when K is permuted 
with each p(i) in turn. It is then necessary to prove 
that 

easily arrived at.12 Both these solutions are not 
necessarily unique, and in fact fail to be unique 
by the Castillejo-Dalitz-Dyson ambiguities. 13 

IV. SCATTERING IN HIGHER SECTORS 

The transition matrix for V - 8 scattering is 

(12) where 
Rv(q; k) = <Xv(q) Ilf~+\k», (15) 

or 
II (n-1)( ) 

(n-1) '" (n-I) i Wp(i) - Wk 
Wk = L...J w. (n I) • 

il' IIi (Wp(i) - W.) 
(12a) 

If we let K = p(O), then 

(n-1) [II ( )]' 
(n-l) ~ i Wp{i) - Wk r (n-l) 

Wk = L...J _ )]' Wr T~O (II.(wp(i) Wr r 
(12b) 

where r is one of the set i = 0, ... (n - 1), and 
[IIi( )]~ indicates the product of all i's except for 
the i = r term which is omitted. Eq. (12b) is the 
Lagrange interpolation formulalo for the representa­
tion of wl,,-l) as a function that is identical to it at 
n points. Since wln-l) is a polynomial of rank (n - 1), 
it is identical to this representation everywhere, 
and Eq. (12b) is an identity. This proves the 
theorem. 11 We can now write 

K(q; k) = g!u(q;uj(k) i [-( g;2)Wk J K: dK U
2

(K) In 
2WqWk n~O 411" w,(w. - Wk) 

To obtain the transition from the reactance 

Xv(q) = (X - m - w.)VtA! 10); 

using Eq. (6), we have 

g2U(q) {'" U(K) 
xv(q) = - (2W.)1 7' (2w!)t 

(16) 

X [ A:V
t 

- gp ~ ~~! A;A:NtJ 10)}, 
and 

* __ g;u(q) '" U(K) 
xv(q) - (2w.)! 7' (2w~)! <01 V A •. (16a) 

The above lead to 

Rv(q; k) = - g~u(q)u(k)(2w!wtrl 

- <xv(q) 1 [X - m - Wk - il1r l
l xv(k». (17) 

We insert 1 = Ilfn)(lfnl into the right-hand side 
of Eq. (17) and we obtain contributions from 
the V - 8 and the N - 81 , 82-scattering states. 
In the expression for Rv(q; k), the matrix element 
<xv(q) 1 lf~+) (x, x'» appears. This quantity is the 
transition matrix for the inelastic process V + 
8q P N + o. + 0 •. , and we will refer to it as 
Ra(q; x, x'). Eq. (17) becomes 

Rv(q', k) = matrix, we apply the Heitler equation which 
g!u(q)u(k) 

2w!w! 
leads us to 

R(q; k) = g;(2w!wtr 1u(q)u(k) 

[
1 + g; J l dK U

2

(K) J-I 
. 411"2 Wk w~(w. - Wk - il1) 

To represent R(q; k) by a contour integral, 
substitute hew) = w(r(wW 1 into Eq. (7); here, 

r(wk) = 2w!w~R(q; k)[u(q)u(kW l
• 

This implies that 

(14) 

we 

1m [hew)] = - [411"Wr 1 (w2 
- m:)!(J(w - me)U2 (w) 

on the upper branch of the real axis. From the 
form of Eq. (8), we can fix bounds on the high­
energy W dependence of h (w), and then, by performing 
a contour integral, the explicit form of hew) is 

10 E. Goursat, A Conrse in Mathematical Analysis, trans­
lated by E. Hedrick (Dover Publications, Inc., New York, 
1909), Vol. I. 

11 The author is indebted to Professor A. A. Blank for 
pointing out the identity of Eq. (12) and the Lagrange 
interpolation formula. 

L Rv(q; x)Rt(~; x) 
• W. - Wk - ~11 

L R,,(q; x, x')R:(k; x,.x'). (I7a) 
.,.' w. + W.' - Wk - ~11 

The same procedure can be invoked to derive an 
integral equation for the quantity RN(q, q'; k, k'), 
the transition amplitude for N + Ok + Ok' -> N + 
8q + Oq .• In that case we have 

RN(q, q';k, k') 

= _ L RN(q, q'; x, x')R~(k, k'; x, ,x') 
.,.' w. + WK ' - Wk - Wk' - ~11 

_ L: Rff(q, q'; x)R~(k, k' ;.x) , (18) 
• w, - Wk - Wk' - ~11 

where 
Rff(q, q'; x) = <XN(q, q') Ilf~+)(x». ----

12 M. L. Goldberger and S. B. Treiman, Phys. Rev, 113, 
1663 (1959). 

13 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 
101, 453 (1956). 
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Similarly we obtain are identical. We have 

R,,( . k k') = _ I: Rv(q; x)R~(k, k'; ~) 
q, , • W

K 
- Wk - Wk' - ~TJ 

(X T - mB)B
t /0) = XaBt /0), 

and 

_ L R,,(q; x, x')R~(k, k'; x, x:) , 
'.K' W. + W K ' - Wk - Wk' - ~TJ 

(19) D(p) = G( 1f,~-)(p) / L u(k)e2wkf~ A:N
t 

/0). 
k 

(22a) 

and 
Up [ u(q) u(q') ] 

Rp(q, q'i k) = -2t (2w.)! Oq',k + (2w
q
,)i Oq,k 

L R~(q, q'; x)R~(~; x) 
• w. - Wk - '/,TJ 

Applying Eq. (5) of HI, we have 

D(p) = G L u(k) (2Wkr !( 1f~-) (p) I 
k 

X [11f.~-)ek» - eX - Ek + iTJfl Ix.v(k»] 

= G L u(k)(2wkf! 

I: RN(q, q'; x, x')R~(k;~, x'). 
•.• ' W K + W K ' - Wk - tTJ 

(20) X [Op,k - N,~-)(p)1 (JC - Ek + iTJ)-1 Ixv(k»], (22b) 

Equations (17a), (18), (19), and (20) are a closed 
set of simultaneous integral equations. They can 
be iterated exactly as were the integral equations 
in HI. As in the case of these latter, as well as in 
the case of N - 8 scattering, there are no longer 
any unphysical quantities in these integral equations, 
and only the "renormalized" coupling constant Up 
appears. The argument presented in HI that all 
iteration integrals are finite, applies equally well 
to this case. 

IV. WEAK DECAYS AND 
FINAL-STATE INTERACTIONS 

We will now examine the consequence of adding 
various additional terms to the Hamiltonian, so that 
the new Hamiltonian allows certain specified weak 
decays. We will postulate the existence of an 
additional fermion B, with mass mB > mN + 2me, 
which we will, in one case, allow to decay by the 
scheme B - N + 8, and, in a later section, by the 
scheme B - V + 8. Finally we will also discuss 
the Goldberger-Treiman model. 12 

(A) B - N + (I Decay 

The term Ha + mBbtb, where 

Ha = G L u(k)(2wkf!(ba:nt + nakb\ (21) 
k 

is added to the Hamiltonian to describe this decay. 
For simplicity, the momentum dependence of B 
is suppressed. Since this is a weak decay, only the 
lowest-order term in G will be considered and 
no attempt will be made to dress the B particle. 
To first order in G, the decay amplitude is given by 

D(p) = (1fi;) (p) !(XT - mB)! B), (22) 

where X T = X + Xa + mBBtB, and where we 
have written Bt, B for bt , b respectively, to indicate 
that to this order in G, the bare and dressed B 

which becomes 

(22c) 

Here R(-)(Pi k) is given by (1f,~-)(p) ! xN(k»i it is 
a form of the transition matrix for N - 8 scattering 
and is identical to R(p; k) on the energy shell. 
It is given by 

R(-) (p; k) = g!u(P)u(k)(2w!wtr I 

X [1 + .Jb.2 Wp J 3 l dK U

2

(K) • J-I. (23) 
411' w.(w< - Wp - '/,TJ) 

Since the Wk dependence of R (-) (Pi k) is entirely 
trivial, the integrations indicated in Eq. (22a) can 
be immediately performed; the resulting expression 
for D(P) is 

D(p) = ~ {I - -4- J e dk u(k) 
(2wp)! 411' Wp Wk(Wk - Wp - iTJ) 

X [1 + g!2 W
p 
J 3 l dK U

2
(K) . J-I}. (24) 

411' w.(w. - Wp - '/,TJ) 

(B) The Goldberger-Treiman Model 

In the Goldberger-Treiman model, in addition 
to the N, V, and 8 particles, an additional particle 
8' is introduced. 0' participates in no strong inter­
actions whatsoever, and interacts weakly according 
to the scheme 

t t t 
H = G L n n[ak(:¥q + ak(:¥qlu(k)U(q). (25) 

'Y M k,q 2(WkW.) 

The decay amplitude for the decay V -t N + 8' is 
then computed. Since in the case treated here 
mv = mN, we will take the 8' to be a massless 
particle. The decay can then take place in the limit 
of zero-momentum 8' particles. The part of H 'Y 
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[N + gp L u(K)(2w~rt A:Y] . 
X [Ak + gpu(k) (2w!r tN t V][a:(2W.)-!] U(q). (25a) 

In this decay there are no strong final-state 
interactions, and DaT, the amplitude for V --t N + 
0' decay, is 

D () (01 ')' I V) G gpU(p) "u2

(k) 
aT P = :Jtap(X'Y = M (2Wp)! ~ 2w! . 

(26) 
Since, for the Lee Model, om is given by 

om = -l L u2(k)(2wi)-1 , (26a) 
k 

we can write 

+ L U(k)U(K)R~-)(Pik,K) ] (29a) 
gp k,. (2WkW!)t(Wk + w. - Wp - iTJ) , 

where 
R~-)(Pi k, K) = (~~-\p) I xN(k, K» . 

In an identical fashion, we obtain the following 
expression for DN(q, p), the amplitude for B --t N + 
0" + Op decay: 

D () G [go(w. + wp)u(q)u(p) 
N q, P = -V (2w.w,} 

L U(k)U(K)R~-)(p, qi k, K) 
- gp k ,K (2WkW!)!(Wk + w. - w. - Wp - iTJ) 

+ L u(k)m-')(p, q; k) ] (30) 
k (2Wk)t(Wk - W. - Wp - iTJ) , 

where 

R.~-)(p, qi k, K) = (~1-)(p, q) I xv(k, K», 
G U(p) Z 

DaT = - M (2W )! - om, 
p gp 

(26b) and 
R~(p, qi k) = (~"~-\p, q) I xv(k». 

which agrees with the result of Goldberger and 
Treiman. In the zero-frequency limit, this gives a 
vanishing decay rate, but that is a kinematic detail 
which is of no consequence to this discussion. 

(C) B --t V + 8 Decay 

For this case we add the term He + mBbtb, 
where H c is given by 

He = Go L u(k)(2wkr!(ba:vt + vakb
t
) (27) 

k 

to the Hamiltonian. Because of the weakness of H; 
we again make no attempt to dress the B particle, 
except that we allow G to differ from its correspond­
ing bare coupling constant Go. D v , the transition 
amplitude for B --t V + 0 decay, is given, to first 
order in G, by Dv(p) = (~~-)(p) I Xc I B). Using 
Eq. (2), we have that 

JC IB) = !2 L u(k)A: 
• zt k (2Wk)l 

X [vt - "U(K)A:NtJ 10) 
gp 7' (2w~)t , (28) 

which, in turn gives 

Dy(p) = ~ ~ (~~~t [(~~-)(p)1 A;yt 10) 

- gp ~ (;~!~t (~~-)(p) I A;A:N
t 

10)]. (29) 

The same procedure that was followed in part (A) 
here leads to 

We now address ourselves to the problem of 
iterating the expression for Dy(p) to the first few 
orders in g~. The integral equations for R~-) (p; k) 
and R~-) (Pi k, K) are: 

gp
2u(p)u(k) 

R~->CPi k) = 
2w!w! 

L R~-)*(K; p)R~-)\Ki k) 
• w. - Wp - ~TJ 

R C-)*( , )R C-)( , k) L ~ K, K ; P @ K, ~ i , (31) 
.,.' w. + W K ' - Wp - ~TJ 

and 

R,,(-) (p,' k, k') = gp [U(k) 0 + u(k') li ] 
- 2t (2Wk)t p,k' ( 2Wk,)t p,k 

L R~-)*(Ki p)R~-)(K: k, k') 
• (w. - We - ~TJ) 

R C-)*C ,. )R C
-)( ,. k k') _ L ~ K, K ,p V K, K.' ' . (32) 

".' (w K + W K ' - We - ~TJ) 

Similar equations can be written for all other 
matrix elements appearing in Eqs. (31) and (32). 

Using Eqs. (31) and (32), Dy(p) will be expanded 
to g~. To lowest order (independent of gp), DC:) (P) = 
(G/Zi)U(p) (2w p )-l; to the next order, there are 
two contributions to D~) (p)-one from the integral 
over R~-), the other from the integral over R~-). 
We will label these [D~) (P)]y and [D~) (p)]", re­
spectively. We then have 

[D~\p)]y = (Gzt) (u2(p»j g: L ( ~2(k) _ i ) , 
Wp k Wk Wk Wp TJ 

(33) 
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and 

Although each of these integrals diverges sep­
arately at high frequencies, D<;) (p) (given by 
D~2) (P) = [D<;) (p)]y + [D<;) (P)]a) is a convergent 
integral in the sense that as the integral is cut off 
at increasingly higher frequencies, it approaches 
a finite limit. D<;) (p) is given by 

-(~!)u(p)(~pr ~2 
X J 3 e dk u

2

(k) . 
Wk(Wk - W" - iTJ) 

(33a) 

To the next highest order, D~4) (p), we obtain 

(34) 

[D~4)(p)L = -(~~) (~~! (6r 
X J e dk K2 dK u2(k)U2(K)(Wk + wK) 

(w;W:)(Wk + WK - Wp - iTJ)(wK - Wp - iTJ)' 

" .... ", .. ' 
~ 

,-- ,/ 

~ 

FIG. 1. Decay graphs. N 
graphs represent B --+ N + (J 
decays, V graphs represent 
B --+ V + (J decays, and the G T 
graph represents the V -> N + (J' 

decay in the Goldberger-Treiman 
model. The numbers designate 
the order of (J p in each di~am. 
The thick solid line indicates 
the B particle, the thin solid 
line the V particle, the wavy 
line the N particle, the dashed 
line the (J particle, and the 
dotted line the (J' particle. 

In the amplitude for B - V + (J decay, the second 
term in the expression for H" is operative at the 
first vertex, and HI is operative at all other vertices. 
In order to express these matrix elements properly 
in terms of dressed-particle parameters, and in order 
to avoid divergent integrals (in the sense in which 
that term has been used in this paper), it is necessary 
to renormalize the theory!4; thus the self energy 
can be written4 SeE) = ZSAE). In the case of the 
Lee model with B p V + (J coupling, there are, 
beyond the graphs in the Lee model, additional decay 
vertex graphs (diagrams V - 0, V - 4). We can 
write the proper decay vertex part 

d(E, E') = Go(2wp) -! L(E, E') , 

Again, each of these integrals individually and we can write the following integral equation 
diverges at high frequencies. The sum of both, for L(E, E'): 
D~4)(p), is given by 

X J e dk K2 dK u\k)U2 (K) 
W;W;(Wk -Wp - iTJ)(wK -Wp - iTJ)(Wk +w K -w" - iTJ)' 

(34a) 
and this is a convergent integral. 

(D) Discussion 

For purposes of comparison, we will now develop 
the old-fashioned power-series expansion of Dy(p). 
The primitive expression for the T operator is 
given by 

T = H" + H"(E - Ho + iTJ)-!H" 

+ ... H"(E - Ho + iTJ)-! 

X H" ... (E - Ho + iTJ)-!H" + 
and (f I T I i) is the primitive transition-matrix 
element; H" is given by 

H" = H! + Go L u(k)(2wk)-l[vakbt + ba:vt
]. 

k 

2 

LeE, E') = 1 + :71"2 

X J e dk L(E, E ;- wk)S(E - w,,) . 
wk(E - Wk) 

Using SeE) = ZS/(E), this becomes 
2 

L(E, E') = 1 + f;2 

(35) 

X f k
2 

dk L(E, E -; w,,)8f (E - Wk). (35a) 
Wk(E - Wk) 

We now inquire whether L(E E') can be written as 
L(E, E') = aLI(E, E') where L/(E, E') is convergent 
and where LI(O, 0) = 1. Assuming L(E, E') = 
aLI(E, E'), we have 

2 

aL (E E') = 1 + f!:fl.e. I , 471"2 

X f e dk L,(E, E ;- wk)81(E - Wk). 
wk(E - Wk) 

(35b) 

14 G. Chew, Phys. Rev. 94, 1749 (1954); A. Lenard (private 
communication). 
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Since the integral on the right-hand side of 
Eq. (35b) includes all finite radiative corrections 
inserted into the primitive skeleton (there is only 
one proper irreducible graph), we have 

g!_ J e dk LI(E, E - Wk)SI(E - Wk) 
411'2 wiE' - Wk) 

= Ao + A/(E, E'), 

where Ao is the skeleton divergence. 15 Since the 
skeleton integral is logarithmically divergent 
A/(E, E') is convergent, and the answer to th~ 
question posed above is affirmative. We have 

all + A/(E, E')] = 1 + aAo + aA/(E, E'), 

and 

a = (1 - Ao)-I. 

Moreover, we have the result that decay vertex 
graphs are renormalized precisely as are vertex 
graphs in any static theory. An extra factor of 
Z-l is obtained from a full complement of wave­
function renormalization bubbles at the right of the 
B p V + (J vertex. In the limit of mB ~ my, m9 ~ 0, 
the entire decay amplitude is given by DyCp) = 

Gu(p) (2wpZ)-!, where G = aGo. At least to this 
order in G we may take this to define a "physical 
coupling constant" (aGo/ Z!). Of course the argu­
ments for defining the physical coupling constant 
by going to this limit are far less compelling than 
are the ones in the case of charge renormalization 
in quantum electrodynamics, but the procedure is 
as sound as the one invoked in the case of the 
scattering of any particles with nonvanishing rest 
mass. 

It is now possible to apply the rules for renormaliz­
ing decay graphs and to compute the expression for 
the decay matrix element to all orders in gpo This 
has been done to order g!; to this order, the diagrams 
V-O, V-2, V-4a, and V-4b occur. When the re­
normalized expressions corresponding to these graphs 
are computed, they agree completely with the 
results obtained by iterating Eq. 29a [e.g. Eqs. 33a 
and 34a]. 

We will now address ourselves to the appearance 
of the weak coupling constant G in the expression 
for ~Cc in Eq. (28). There are two possible points 
of VIeW that may be taken in discussing the type 
of model theory treated here. In one case, the cut off 

15 J. M. Jauch a~d F. Rohrlich, The Theory of Photons 
and El~ctrons, (Addison-Wesley Publishing Company Inc. 
Cambridge, Massachusetts, 1955), p. 212f. Note that i~ 
our Eq. 35b, we have L(E, E') = 1 + A(E E') and later 
that LJ(E, E') = 1 + AJ (E, E'J. ' " 

u(k) can be adjusted so that all integrals converge 
primitively, all renormalization constants are well 
defined and, hopefully, all or most problems are 
exactly soluble. In such a treatment, since the values 
of all primitive graphs are finite, it is entirely optional 
and almost trivial whether the theory is renormalized 
or not, i.e., whether or not a finite renormalization 
constant is factored out explicitly from a primitive 
expression; this is, of course, providing the scattering 
theory is applied to the correct asymptotically 
stationary states. 

To discuss the B~ V + (J decay from that point 
of view would require an exact solution for a 
Ruijgrok-Van Hove-type theoryl6 with two V 
particles, and V 2 unstable. It is not our purpose here 
to find such a solution to this problem. 

In the second case, a somewhat more heuristic 
point of view is taken. The cut off is permitted 
to recede to infinity without extensive inquiry as to 
whether this is consistent with the formal manipula­
tions that are made in the course of developing the 
theory. In the absence of such a detailed inquiry 
which, in any case is not possible except in very 
simple models, the manipulations that lead to the 
integral equations are valid in a formal sense only, 
and do not follow unambiguously as they would in a 
calculation in which the first point of view is taken. 
This latter procedure was followed in HI and also 
here in the case of B ~ V + (J decay. In particular 
the relation between the bare and dressed B 
operators is a case in point. The dressed B operator 
is not well defined since the one-particle B function 
should not be an eigenstate of H T. Thus the identi­
fication of Gob with GB, obvious a choice as it is 
is in the nature of an "ansatz" which constitute~ 
part of the theory. We note that in the limit mB~my 
only the BA tvt part of Xc contributes to the decay 
amplitude, and only in the Born approximation. 
Since the expression consists of dressed operators, 
the Xc weak vertex must include the zero energy, 
zero-energy exchange contributions of the primitive 
proper decay vertex part, hence G, and not Go, is 
the proper coefficient in Xc' 

We observe that just as the integral equations in 
HI and Eqs (7) and (17a) to (20) correctly reproduce 
the "renormalized" transition matrix, so also does 
Eq. (29a) correctly reproduce the renormalized decay 
amplitude without requiring subtraction or, for that 
matter, any thing other than straightforward itera­
tion. In spite of the heuristic basis of some of the 

16 Th. W. Ruijg:?k and L. Van Hove, Physica 22, 880 
(195~); Th. W. RUl]grok, Physica 24, 137 and 185 (1958)' 
PhysIC a 25, 357 (1959). ' 
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manipulations that led to Eq. (29a), it is still a great 
improvement over the old fashioned perturbation 
procedures since in the present case, the integral 
equations themselves contain no more divergences or 
unphysical quantities (if G / Z! is properly interpreted 
as the physical coupling constant). In the old theory 
however, these problems can be solved only in a 
perturbative sense, order by order. 

The situation with respect to the iterative expan­
sion of the decay amplitude is quite different in the 
case of the B ---> N + 6 decay. The proper "ansatz" 
in that case is b = B, and the expansion of the decay 
amplitude consists of integrals that diverge as the 
cut off approaches infinity. In fact the "pseudo 
self energy" graphs (in which one vertex is weak 
and one strong; see N-type diagrams) when they 
appear in this expansion, reproduce the primitive 
unrenormalized expression and not the renormalized 
one for this term. This is perhaps not very surprising, 
since in this model there is no distinction between 
bare and dressed particles in the case of any particle 
participating in the interaction, and the bare- and 
dressed-particle picture in a sense coincide. It seems 
therefore that the fact that "g" is the proper 
coupling constant even in X., and the associated 
appearance of primitive "divergent" pseudo-self 
energy terms in the expansion of DN(P) are out­
growths of the severely restrictive selection rules 
that operate in the Lee model to keep both the N 
and the 6 bare. We would not expect this feature 
of the B ---> N + 6 decay to be duplicated in any 
realistic theory for elementary particle interactions. 

In the case of B ---> V + 6 decay, although the 
interaction Hamiltonian when written in terms of 
bare-particle operators contains only a B - V - 6 
vertex, it contains an additional B - N - 61 - 62 

vertex when written in the dressed-particle picture. 
In general, in more realistic models, it is reasonable 
to expect that such bare-particle Hamiltonians, 
when transcribed into the dressed-particle picture, 

proliferate terms to include vertices with many 
states to which transitions are not forbidden by 
the selection rules. We can separate the equation 
for the B ---> V + 6 decay into three parts: 

(1) The Born term G(2wp Z)-!; 
(2) The R~-) term, in which the dressed decay 

Hamiltonian Xc connects the B and V - 8 states, 
and the V - 6 state scatters V + 6 ---> V + 6; 

(3) The R~-) term in which Xc connects the B 
and the N - 6 - 6 states (though there is no such 
coupling in the bare-particle picture) and the 
N - 6 - 6 - state scatters N + 6 + 6 ---> V + 6. 

In spite of obvious differences/ 7 there is a strong 
resemblance between Eq. (29a) and equations for 
the decay amplitude which arise in dispersion 
theoretic treatments. lS The following observations 
about Eq. (29a) may therefore have relevance to 
dispersion theoretic calculations: The R: contribu­
tions (two-meson states) may not be dropped with 
respect to R-y (one-meson states). In fact, since 
elimination of the two-meson relative to the one­
meson contributions lends to spurious divergences, 
this would seem to be a particularly pernicious 
mistake. Moreover, the Hamiltonian Xc dictates the 
relative magnitude of the one-meson and two-meson 
contributions. Any but the correct relation between 
the one-meson and two-meson contributions would 
again lead to spurious divergences. 
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17 For example, Eq. (29a) involves the scattering transition 
amplitudes off the energy shell, though in the case of the 
one-meson processes, the energy parameter that is "off" the 
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18 For example, J. D. Jackson, On the Equivalence of 
Different Treatments of Two-Body Final State Interactions 
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We consider two harmonic oscillators, coupled during a finite time. Initial and final states can be 
defined unambiguously, and if the duration of the coupling is sufficiently short, the S matrix can 
be computed explicitly. The coupling gx2y is investigated in detail, for complex values of g. It is found 
that, along the real axis, the S matrix behaves smoothly as a function of g and tends to the unit 
matrix for g ..... 0, as it should. However, the S matrix has a line of essential singularities along the 
imaginary g axis, including the origin, so that it cannot be expanded into powers of g. If such an 
expansion is sought by means of a perturbation procedure, it is found that each term of the series 
is finite (no need of renormalization), but the series as a whole diverges. 

I T is well known that quantum field theory is 
fraught with considerable mathematical diffi­

CUlties, among which the divergences play a prom­
inent role. Recently, Bialynicki-Birula1 suggested 
that the origin of these divergences is a singular 
behavior of the S matrix at zero coupling constant. 
The renormalization procedure would essentially be 
the removal of that singular part. The purpose of 
the present paper is to show, by means of a simple 
model, that the problem of the singular behavior 
of the S matrix at zero coupling constant is entirely 
distinct from the problem of ultraviolet divergences. 

Let us consider two identical harmonic oscillators, 
coupled during a finite time. The Hamiltonian of the 
system is, with suitable units, 

(1) 

Since get) vanishes outside a finite time interval, 
the definition of the initial and final states i'; and i', 
is unambiguous2 and the S matrix, defined by 
i', = Si'i, is given as usual, by 

S = T [exp J -ig(t)f(x, y) dt]. (2) 

The time ordering of the operators is necessary, 
because, although x and y commute at any time, 
we have, e.g., 

[xC t'), xU")] = - i sin (t' - t"). (3) 

(This relation readily follows from the solution of 

* Partly supported by the Aeronautical Research Lab­
oratory. 

t Permanent address: Israel Institute of Technology, 
Haifa, Israel. 

1 1. Bialynicki-Birula, Phys. Rev. 122, 1942 (1961). 
2 An essential difference from quantum field theory is 

that here, .pi and "" can be arbitrary linear combinations 
of the various eigenstates of the oscillators, while in quantum 
field theory, the initial and final numbers of particles must 
be integers, because of superselection rules. 

the Heisenberg equations of motion for x and pz 

x = Xo cos t + Pzo sin t, 

pz = Pzo cos t - Xo sin t, 

where Xo and Pzo are the initial values of the operators 
x and Pz, satisfying the usual commutation relations.) 

It is now formally possible to represent (2) as a 
sum of Feynman diagrams, using (3) as a propa­
gator.a However, for the sake of simplicity, we shall 
here consider only the special case where get) ¢ 0 
during a time much shorter than the period of the 
oscillators, so that we can make 

get) ~ g 5(t), (4) 

where g is now a constant. Thus we obtain from (2): 

S = e-i'fCz.v) , (5) 

which could also have been obtained directly from 
(1) and (4), by integrating the Schrodinger equation 
i~ = Hi' about t = O. 

We can consider (5) as the q representation of 
the S matrix. However, to make the correspondence 
with quantum field theory, we need the energy 
representation 

where the i'm(x, y) are the eigenfunctions of the free 
Hamiltonian. 

As an illustration, we shall compute the vacuum­
vacuum transition amplitude in the special case 

(7) 

so that one type of oscillator appears linearly and 
one quadratically, as in quantum electrodynamics. 
Here, the "vacuum" is given by 

8 J. Weinberg (private communication). 
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so that 

8
00 

= 71"-1 I( e-X'-Y'-i.X'Y dx dy, (9) 

= 271"-t 1:00 

exp [_x2 
- tlX4] dx. (10) 

With z = !gx2
, P = 2/g, this becomes 

800 = (;Y 1: 00 

z-!e-wz
' dz 

= 7I"-tg-IeI/2"Ki(1/2l), (11) 

where K is the modified Bessel function of the third 
kind.4 This function behaves quite smoothly for all 
real values of g and tends to unity when g -t 0, 
as can easily be seen from (10) and as should be 
expected on physical grounds. However, it is also 
easily seen from (10) that Soo diverges badly for 
purely imaginary g. This result is reminiscent of 
Dyson's heuristic argument,5 according to which the 
electromagnetic vacuum would explode sponta­
neously into a large number of pairs, if e2 

-t _e2
• 

On the other hand, we may ask how a perturba­
tion treatment of this problem (Le. a power series 
in g) would display the essential singularity of the 
8 matrix at g = O. The answer is readily obtained 
by expanding (9) or (10) into powers of g. The 
result is 

800 = L: [( -1)m(4m) !/26mm! (2m) !]lm, (12) 

and can also be obtained from the known asymptotic 
behavior of K(z) for z -t <Xl.6 Note that each term 

! A .. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. 
Tncoml, Tables of Integral Transforms (McGraw-Hill Book 
Company, Inc., New York, 1954), Vol. I, p. 146, Eq. (23). 

: F. J. Dys~n, Phys. Rev. 85, 631 (1952). 
. A .. Er~elyI. W. Magnus, F. Oberhettinger, and F. G. 

TncomI, H~gher Transcendental Functions (McGraw-Hill Book 
Company, Inc., New York, 1953), Vol. II, p. 86, Eq. (7). 

is finite, even without renormalization (contrary to 
Bialynicki-Birula's conjecture l

). This is related to 
the fact that the propagator (3) has no singularity. 

For large m, the ratio of consecutive terms of 
(12) is -ml, so that this series has a zero radius 
of convergence. A similar result was obtained long 
ago by Hurse and Thirring8 for a simple model of 
field theory. The present "mechanical" model has 
the advantage of being still simpler, so that the 
explicit value of the 8 matrix can also be obtained 
and compared with the result of perturbation theory. 

Although a rigorous proof seems difficult, there 
are indications that a similar situation prevails in 
quantum electrodynamics9 and probably in all other 
nontrivial field theories. Roughly speaking, this is 
due to the fact that the number of distinct Feynman 
diagrams of order n behaves approximately like 
n!,IO so that any perturbation expansion is at best 
asymptotic, Le. of limited accuracy. We may wonder 
whether this inability to achieve exact results is due 
only to a temporary weakness of our mathematical 
tools, or perhaps reflects an underlying and yet 
undiscovered indeterminacy of nature. 

The author is indebted to Professors R. L. 
Arnowitt and P. G. Bergmann for the warm hospi­
tality of Syracuse University, and to the U. S. 
Educational Foundation in Israel for the award of 
a Fulbright travel grant. 

7 C. A. ~U!st, Proc. Cambridge Phil. Soc. 18, 625 (1952). 
8 W. Thlrnng, Helv. Phys. Acta, 26 33 (1953) 
:0 S. Frll;utschi, Pr?g. Theoret. Phys. (Kyoto) 22,'882 (1959). 

For Instance, In quantum electrodynamics there are 
(n - f)!2k!/~kk!n! topologically distinct Feynma'n diagrams 
of order n, WIth 2/ external fermion lines and n - 2k = P 
external photon li~B!" (T!lls is mos~ easily proved by counting 
the ~umber of pa~gs In the Wick theorem.) The number 
of diagrams thus Increases approximately n-fold for large 
n, when n -> n + 2. ' 
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Variational principles for obtaining the eigensolutions if;; of the equation '\]2if; - if; + if;3 = 0 are 
developed. Variational solutions to the first two spherically symmetric eigenstates are obtained. 
Variational solutions of odd parity are also obtained. 

1. INTRODUCTION 

THERE has recently been some interest in non­
linear field theories of elementary particles. 1 

These theories represent attempts to avoid the 
difficulties connected with singularities arising in 
the usual linear field theories. A complete theory of 
elementary particles must be a spinor theory. How­
ever several authors have devoted their attention 
to obtaining particle-like solutions of nonlinear 
scalar differential equations which might have some 
relevance to spin-zero particles and are presumably 
easier to solve. The nonlinear scalar equation most 
commonly considered2 is the generalization of the 
Klein-Gordon equation 

DIO - (}l.2 - '11.10*10)10 = 0, (1.1) 

where A is a coupling constant measuring the 
strength of the self-coupling of the field. After 
separating off a plane-wave factor by writing I" = 
ei(k'r-wt) x(r), the equation becomes 

\J2x - ,ix + Ax3 
= 0, (1.2) 

with a2 
= l + k2 

- W
2 /C2

•
3 By changing variables 

to !} = ar and 1/; = a-I (A) iX, both the constants can 
be eliminated from (1.2).4 Throughout the remainder 
of this paper, the standard form 

\J 2 1/;(!}) - 1/;(!}) + 1/;\!}) = 0 (1.3) 

will be used. 

* Present address: Jet Propulsion Laboratory, California 
Institute of Technology, Pasadena, California. 

1 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1947)' 
L. 1. Schiff, Phys. Rev. 84, 1 (1951); R. J. Finkelstein; 
Phys. Rev. 75, 1079 (1949); R. J. Finkelstein, C. Fronsdal, 
and P. Kaus, Phys. Rev. 103, 1571 (1956); T. H. R. Skyrme, 
Proc. Roy. Soc. (London) A247, 260 (1958). 

2 D. Ivanenko, Nuovo Cimento SuppI. 6, 349 (1957); 
N. Rosen and H. B. Rosenstock, Phys. Rev. 85,257 (1952)' 
V. B. Glasko, F. Leriust, la. P. Terletskii, and S. F. Shushurin; 
Soviet Phys.-JETP 8, 312 (1959); N. V. Mitskevich, 
Soviet Phys.-JETP 2, 197 (1956); D. F. Kurdgelaidze, 
Soviet Phys.-JETP 9,594 (1959). 

3 Equation (1.2) has also been obtained by one of the 
authors in a nonlinear electromagnetic theory: H. Schiff, 
Proc. Roy. Soc. (London) A269, 277 (1962). 

4 This conformal invariance has been exploited by D. F. 
Kurdgelaidze, Soviet Phys.-JETP 11, 339 (1960). 

Three trivial solutions to (1.3) are 1/; = 0, ±1. 
For the spherically symmetric case it has been 
shown by Finkelstein, Lelevier, and Ruderman,5 by 
a phase-plane analysis, that (1.3) possesses a set 
of eigensolutions analytic everywhere, with zero 
slope at the origin and asymptotic to zero at infinity 
for a discrete set of initial values, 1/1;(0). For the 
intervening ranges of initial values of 1/;, solutions 
are asymptotic to +1 and -1 alternately. We shall 
assume that there exists also a discrete set of non­
spherically symmetric eigensolutions asymptotic to 
zero. The eigensolutions will be called one-particle, 
two-particle, etc. solutions, according to whether 
they are substantially different from zero in one, 
two, etc. regions of space infinitely far from one 
another. 

2. VARIATIONAL PRINCIPLE FOR PARTICLE STATES 

Equation (1.3) arises as the Euler equation for 
the Lagrangian: 

The possibility then of obtaining approximate solu­
tions to (1.3) by a variational principle using (2.1) 
is immediately suggested. The difficulty arises be­
cause of the indefinite sign of L, and there is no 
assurance that the variational solution will provide 
an upper or a lower bound to L; indeed the integrand 
does not satisfy the Legendre condition.6 

In order to develop a variational principle without 
this defect, we first note that if we mUltiply (1.3) 
by 1/;, integrate over all space and use Green's 
theorem, the integral relation 

is established. 

5 R. J. Finkelstein, R. LeLevier, and M. Ruderman, Phys. 
Rev. 83, 326 (1951). 

6 R. Courant and D. Hilbert, Methods of Mathematical 
Physics (Interscience Publishers Inc., New York 1953) 
First English Edition, p. 214. ' 
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Consider now the variational problem of ex- solution of the first variational problem. Again we 
tremizing 

subject to (2.2) as a subsidiary condition. We u~e 
the Lagrange multiplier method and extremize 

The Euler equation which makes L' an extremum 
then becomes 

-(1 - )1.)\121/; + (1 - )1.)1/; + 2)J.yl = O. (2.5) 

Now multiply by 1/;, integrate over all space and 
use Green's theorem to obtain 

but since (2.2) must also be satisfied, )J. = -1, 
and (2.5) becomes (1.3) as desired. 

Now however, ! f[(\11/;)2 + ",2] d" satisfies the 
Legendre condition and has a minimum. The appli­
cation of subsidiary conditions can only serve to 
raise the value of this minimum.7 Thus, determining 
a minimum of (2.3) subject only to (2.2), is equi­
valent to finding the ground-state solution of (1.3). 

To obtain excited states by the variational method 
we must apply further subsidiary conditions. Let 
I/;i and 1/;; be two different eigensolutions of (1.3). 
They then satisfy 

\1
2

1/;i - "'i + I/;~ = 0, (2.6) 

(2.7) 

Multiply (2.6) by",;, (2.7) by I/;i, subtract and inte­
grate over all space using the symmetrical form of 
Green's theorem to obtain 

Relation (2.8) is in some ways analogous to the 
usual orthogonality relation between eigensolutions 

use the Lagrange-multiplier method and minimize 

+ ~ f [1/;4 - (\11/;)2 - 1/;2] d" 

+ p f [1/;31/;1 - I/;I/;n d". 

The Euler equation is 

-(1 - )J.)\12 1/; + (1 - )J.)I/; + 2)J.I/;3 

+ p(31/;21/;1 - I/;D = o. 

(2.10) 

(2.11) 

Now the Lagrangian is invariant under the 
operation", -t -'" and so are the subsidiary con­
ditions (2.2) and (2.9). Therefore, if I/; = 1/;2 minimizes 
the Lagrangian subject to the subsidiary conditions, 
so must I/; = -"'2' Thus if 1/;2 is a solution to the 
Euler equation, so must -1/;2 be a solution. This is 
true of (2.11) only if 1/;2 = ±I/;1(3)-! or if p = O. 
In any case, (2.11) becomes identical to (2.5) and 
thus as before, finally becomes (1.3). But clearly 
"'2 = ±I/;1(3)-! does not satisfy the Euler equation 
so p must equal zero. The variational principle in 
a similar way leads to (1.3) again as the Euler 
equation for minimization of L, subject to further 
subsidiary conditions such as 

3. VARIATIONAL SOLUTIONS FOR 
SPHERICALLY SYMMETRIC STATES 

The procedure in applying the variational method 
to the solution of (1.3) is now little different from 
that used for linear differential equations. In order 
to ensure obtaining an upper bound to the La­
grangian, all variational trial functions must satisfy 

(A) 

of a linear differential equation. and 
For the first excited state, consider the variational 

problem of minimizing L of (2.3) subject to (2.2) and 

J 1/;31/;1 d" = J "'I/;~ d", (2.9) 

where "'1 is the ground state solution of (1.3) or the 

7 Reference 6, p. 407. 

(B) 

for all lower states I/;i' [Note added in proof. It is 
clear that condition (B) is necessary but may not 
be sufficient to ensure an upper bound to the La­
grangian for excited states, because it is satisfied 
identically for I/; = I/;i'] In order to make the trial 
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TABLE 1. Variational approximations to the ground state of Eq. (1.3). 

Conditions Optimum parameter values 
1~11' J if;4 d", Function satisfied 

exactly A. p a b 

Teshima's solution 1.503 
1. .'l/(p2 + p2) (A), (E) 2V2-/3 IV6 1.715 
2. Ae- ap (A), (E) 4V2 V3 1.540 
3. Ae- ap' (A), (E) 5.66 1. 73 1.00 1.540 
4. .'l(l + cp)e- ap (A), (E) 5.17 2.27 0.908 1.536 
5. .'l[(e-p - e- ap )/ p + be- ap] (A), (C), (D) 2.7397 5.2 -2.50 1.5071 
6. .'l[(e-p - e-ap)/p + (b + cp)e- ap] (A), (C), (D) 2.6060 4.10 -1.360 2.33 1. 5058 
7. .'l[(e-p - e- ap )/ p + be- ap] (A), (C) 2.7094 5.491 -2.950 1.5045 

functions more like the true solutions, they may 
also be made to satisfy 

p~~CXl, (C) 

and for spherically symmetric states, 

d1/;1 = 0 
dp p-o • 

(D) 

Actually for any trial function having a variable 
amplitude factor A, minimization of L with respect 
to A automatically satisfies condition (A). The 
exact particle-like solutions to (1.3) also have been 
shown3 to satisfy the relation 

The satisfaction of this relation is not demanded in 
the variational method, but occurs automatically in 
functions where p is everywhere multiplied by a 
variational scale parameter. The relation (E) does 
guarantee the proportionality of the Lagrangian 
(2.1) or (2.3) to the energy or mass of the localized 
states according to the usual expressions.2

•
3 

For the spherically symmetric ground state, the 
various variational approximations are listed in 
Table I. Table II gives corresponding results for 
the first excited spherically symmetric state. 

Teshima8 has also found the first three spherically 
symmetric solutions of (1.3) numerically. Using his 

results, the values for the ratio f 1/;4 df}/ f 1/;2 df} for 
the first three solutions are 4.00004, 4.002 and 
3.999 respectively. We take this as evidence of the 
accuracy of his numerical solutions and so his 
values of (1/161l') f 1/;4 df} are also included in Tables 
I and II. 

In Table I, a succession of trial functions are seen 
to give values which approach Teshima's value for 
(1/161l') f 1/;4 df} more and more closely from above 
than expected. Indeed, function 7 gives a value 
only 0.1% higher than Teshima's. It can be seen 
that the requirement of zero slope at the origin for 
function 5 is disadvantageous as regards obtaining 
an upper bound to the Lagrangian. Thus we have 
not applied condition (D) in the variational calcula­
tions for the second spherically symmetric state. 

Table II contains two three-parameter trial solu­
tions, both of which give values for (1/161l') f 1/;4 df} 
about 5% higher than Teshima's. Functions 8 and 9 
have been orthogonalized with respect to functions 
4 and 7, respectively. A better value for the La­
grangian could no doubt be obtained by using more 
flexible trial functions, or by using functions 8 and 9 
in the Green's function method described in ref­
erence 3. 

4. VARIATIONAL SOLUTIONS OF ODD PARITY 

The variational method should be of great ad­
vantage in seeking nonspherically symmetric solu-

TABLE II. Variational approximations to the first excited spherically symmetric state of Eq. (1.3). 

Conditions 
Optimum parameter values 

_1_ J 1/;4 d", 
Function Satisfied A. a b C 1611' 

8. A(l + cp)c ap (A), (B), (E) 14.38 1.802 -1.876 9.9712 

9. (p - e- ap ) (A), (B), (C) 20.36 A + be- ap 2.535 -2.3 10.02 p 

Teshima's solution 9.460 

• R. K. Teshima, M.Sc. Thesis, University of Alberta, Edmonton, Alberta, Canada (1960, unpublished). 
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TABLE III. Variational approximations to the lowest odd-parity one-particle state of Eq. (1.3). 

Conditions Optimum parameter values 
1~" J >/;4 de satisfied 

Function exactly A a (3 "f b 

9. Az exp (-ap) (A), (B), (E) 32/v 3 v3 5.47 
10. Az exp ( -ap') (A), (B), (E) 
11. A (z exp 1-[a2(x2 + y2) + "f2z2JI} (A), (B), (E), (F) 

+b(5,),2Z3 - 3[a2(x2 + y2) + ,),2Z2]Z) 
exp l-tJ[a2(x2 + y2) + ,),2z2]1}) 

tions to (1.3), because rough variational estimates of 
the energy can be obtained very quickly. 

We now seek a solution of odd parity employing 
a sequence of trial functions having this property. 
Note that the "orthogonality" conditions (B) with 
respect to all spherically symmetric solutions are 
then satisfied exactly by symmetry. There is now, 
however, an additional relation [Eq. (5.1) of ref­
erence 3] valid for all particle-like solutions of (1.3), 
which the variational functions may be made to 
satisfy; namely 

Suppose 1/Io(p) is the lowest spherically symmetric 
solution of (1.3) corresponding to an energy Eo. 
Then clearly 1/1 = 1/Io(lv + RI) - 1/Io(lv - RI) for R 
tending toward infinity is an odd-parity two-particle 
solution with an energy E = 2Eo( < 3.01). We believe 
that this is indeed the lowest odd-parity solution. 
Hence in seeking variationally the lowest odd-parity 
one-particle solution, one must be careful that the 
lower two-particle solution is not being approached. 
The results of the variational approximations to the 
lowest one-particle and two-particle states respec­
tively are contained in Tables III and IV. 

Functions 9 and 10 are well localized and when 
used in the variational principle seem to give rough 
approximations to the energy of the lowest one­
particle odd-parity state. Functions 12 and 13 are 
able to approximate, for certain limiting values of 
their parameters, a two-particle state, and the only 
minimum they give is of this nature. 

3.03 2.76 1.8 4.72 
11.37 1.76 2.12 1.37 1.65 4.115 

Function 11 is a very flexible five-parameter func­
tion. Its form derives from the function 

by including an additional cartesian scale parameter. 
In practice, however, it becomes a two-parameter 
function after satisfying relations (A), (E), and (F). 
The lowest extremum obtained using function 11 is 
a minimum representing a one-particle solution. In­
deed the form of the function is such that for no 
values of the parameters could it approximate a 
two-particle state. The use of a trial function with 
more than five parameters in order to get a still 
better approximation to the lowest odd-parity one­
particle state would involve an appreciable amount 
of labor. However, we believe that the energy of this 
state must be quite close to (4.11). We know of no 
other calculations to compare with ours for odd­
parity states. 

5. CONGLUSION 

We have developed a variational principle for the 
eigensolutions of the most commonly considered 
nonlinear scalar field equation. The field equation 
appears as the Euler equation for the minimization 
of a Lagrangian subject to one or more subsidiary 
conditions. 

The variational principle allows us to obtain ap­
proximate solutions to the nonlinear equation, and 
upper bounds to the corresponding values of the 
Lagrangian. Such solutions and bounds were ob-

TABLE IV. Variational approximations to the lowest odd-parity two-particle state of Eq. (1.3). 

Function 

12. A z2n+l exp (-ap) 

13. A {exp (-a\e - R\) 
- exp ( -a e + R ) } 

Function constructed from 
Teshima's one-particle solution 

Conditions 
satisfied 
exactly 

(A), (B), (E) 
(A), (B), (E), (F) 

Optimum parameter values 

A a n R 
_1_J >/;4 de 
16" 

3.56 
3.08 

3.01 
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tained for a set of trial functions for the first two 
spherically symmetric eigenstates. The best trial 
functions give energy values in good agreement with 
those of Teshima, which were obtained by numerical 
solution of the nonlinear equation. 

expect that other nonspherically symmetric single­
particle solutions exist. 
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The variational method is well suited to obtaining 
approximations to nonspherically symmetric eigen­
solutions of the nonlinear equation. We have ob­
tained one variationial solution of odd parity. We 
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The usual form Po for the quantum-mechanical operator P conjugate to a generalized coordinate 
q, is, in atomic units, 

Po = -ig-i ajaq,(g! ), 

where g is the Jacobian of the transformation from Cartesian coordinates to the generalized coordinates. 
However, in some cases, this plusible form for P is not Hermitian with respect to physically acceptable 
bound-state wavefunctions, as it must be if it is to represent a real observable quantity. In this paper, 
the general form 

P = -i(Aograd + ! div A) 

is justified. Here A = h,q" where hi is the metric scale factor corresponding to q" and q, is the unit 
vector in the direction of increasing q,. This general form reduces to Po if the usual formula for the 
divergence is applied. In the cases where Po is not Hermitian, it transpires that q, is ill-defined at one 
or both of the end points a and (3 of the range of q" and the divergence formula is thus invalid at 
such points. It is shown that, in order to obtain a Hermitian form for P, certain terms involving 
delta functions similar to Dirac's must be added to the usual formula for div A. These terms can be 
regarded as implicit in div A. If q, is ill-defined at the lower limit q, = a, then the resulting new 
Hermitian form for P, which we propose as the correct one, is 

P = -i[g-i a j aq,(gi ) + ill+(q, - all. 
If q, is, in addition, ill-defined at the upper limit q, = (3, then the extra term +ii 1l_«(3 - q,) must 
be added. Corresponding new forms are obtained for the Laplacian operator. In addition, the new 
formulas for P are applied to hypervirial relations. In the Appendix, Charles Goebel obtains a similar 
expression for the momentum operators by replacing the metric scale function by 8g where 8 is a 
step function, unity inside and zero outside the range of definition of the generalized coordinates. 
The differentiation of () then produces the delta functions. 

I. INTRODUCTION 

THE usual form for the quantum-mechanical 
momentum operator which is conjugate to a 

generalized coordinate is, in some cases, not Hermi­
tian with respect to physically acceptable bound­
state wavefunctions. In such cases we propose, and 
seek to justify, that the correct Hermitian form is 

* This research was supported by Contract AT(1l-1)-298 
of the U. S. Atomic Energy Commission. 

t Present address: Mathematical Institute, Oxford, 
England. 

obtained by the addition of certain terms involving 
delta functions similar to Dirac's. 

One of the basic assumptions of quantum me­
chanics is that to the classical observable Pz, the 
Cartesian x component of the momentum of a 
system, there corresponds the quantum-mechanical 
operator P", = -ih a/ax; we shall employ atomic 
units where h = 1, so that P", = -i a/ax. The P", 
satisfies the necessary commutation rules, and it is 
Hermitian with respect to physically acceptable 
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tained for a set of trial functions for the first two 
spherically symmetric eigenstates. The best trial 
functions give energy values in good agreement with 
those of Teshima, which were obtained by numerical 
solution of the nonlinear equation. 

expect that other nonspherically symmetric single­
particle solutions exist. 
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chanics is that to the classical observable Pz, the 
Cartesian x component of the momentum of a 
system, there corresponds the quantum-mechanical 
operator P", = -ih a/ax; we shall employ atomic 
units where h = 1, so that P", = -i a/ax. The P", 
satisfies the necessary commutation rules, and it is 
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bound-state wavefunctions. The eigenfunctions of 
P x , (2'nT1 exp [iXx], are orthogonal for different X 
over - cx> :s; X :s; cx>, and Fourier analysis shows 
that an arbitrary bound-state wavefunction t/I(x) 
can be expanded in terms of them. 

It is natural to inquire whether a similar cor-
respondence 

Po = -ig- t ajaql(gl ) 

= -i ajaql - (ij2g)(agjaql)' (4) 

Here g is the magnitude of the Jacobian of the 
transformation from Cartesian coordinates to the 
generalized coordinates. The form (4) is discussed 
and justified by Kemble.2 However, in some cases, 

p ~P = -i ajaql (1) even this plausible form is not Hermitian as re­
quired. In this paper we show that this shortcoming 
can be remedied by the addition of terms involving 
delta functions. 

exists for p, the generalized classical momentum 
(assumed to be real) which is conjugate to any 
generalized coordinate ql' Here p is defined as 
aLjaql, where L is the classical Lagrangian. Such a 
correspondence is often asserted in texts on quantum 
mechanics, with the proviso that the operator 
-i ajaql be Hermitian. Usually, however, this 
operator is not Hermitian as it stands. It is the 
object of this paper to show that a function F(ql) 
can always be chosen so that the operator 

Firstly, however, the Hermitian character which 
must be imposed upon P is discussed. Next, the 
general form 

P = -i(A·grad + '! div A) (5) 

is justified. Here A = hIliI' where Ii] is the unit 
vector in the direction of increasing qI, and hI is 
the metric scale factor corresponding to the co­

is Hermitian with respect to acceptable bound-state 
wavefunctions. We observe that the inclusion of 
F(ql) does not affect the commutation relation 

(2) ordinate qI' It is shown that the usual form Po 
[as given by (4)] is derivable from (5) by a straight­
forward application of the divergence formula. In 
the cases where Po is not Hermitian, it transpires 
that the vector iii is not well-defined at certain 

(3) points, which are singularities of the coordinate 
The operator P is actually restricted to the form (2) system. The delta-function terms which must now 
in order that the various commutation rules be be added to Po can be regarded as being implicit 
satisfied. I in div A. We thus postulate that (5) is the true 

[P, qd = -i. 

The status of momentum operators in quantum form for P, provided that the special interpretation 
mechanics has always been somewhat obscure. Even of div A is made whenever necessary. If iii is ill­
the simplest one, P x , is not a proper operator in defined at the lower limit of ql, ql = a, then the 
Hilbert space, since its eigenfunctions are not explicit form of P is 
quadratically integrable over the full range - cx> :s; 
X :s; cx> (as a result it is convenient to introduce the 
concept of "eigendifferentials,,).2 However, if a 
generalized momentum operator P is to represent 
a real observable p, then it is easily shown (see 
Sec. II) that P must be Hermitian with respect to 
acceptable bound-state wavefunctions. We realize 
that if one prefers not to regard a certain p as neces­
sarily being an observable, then one does not need 
to assume that there exists a corresponding operator 
P with this Hermitian property. Nevertheless, it 
seems reasonable to us to suppose that real classical 
generalized momenta are in fact observables, and 
so we seek a general form for P which has the 
necessary Hermitian character. 

What might be termed the "usual" form for P, 
which we call Po, is 

1 P. A. M. Dirac, The Principles of Quantum Mechanics 
(Oxford University Press, Oxford, England, 1947), 3rd Ed., 
Chap. 4. 

2 E. C. Kemble, The Fundamental Principles of Quantum 
Mechanics (Dover Publications, Inc., New York, 1958). 

(6) 

If iiI is also ill-defined at the upper limit ql = (3, 
then we have 

P = -i[g-t ajaql(g! ) 

(7) 

(the delta-functions are discussed in Sec. IV). 
Even now, P is not in general Hermitian with respect 
to a pair of its own eigenfunctions. Such a property 
is equivalent to the orthogonality of the pair of 
eigenfunctions. In the following paper,3 it is demon­
strated that, although these eigenfunctions are not 
usually orthogonal to each other, an arbitrary bound­
state wavefunction can nevertheless be expanded in 
terms of them. 

Generalized momentum operators like P have 
recently come into prominence in connection with 

3 P. D. Robinson, J. Math. Phys. 4, 348 (1963). 
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the hypervirial relations introduced by Hirsch­
felder/,5,6 which have applications in a wide class 
of problems. The present paper is completed by a 
discussion of the relevance of the new form for P 
in this context. The new form is useful, since it is 
desirable that the operators which are employed 
be Hermitian. In a similar manner, a new form for 
the Laplacian operator is obtained involving delta 
functions. However, the delta-function terms rarely 
would have any effect on the theoretically predicted 
physical properties of a system. 

In the Appendix, Charles Goebel approaches the 
determination of the momentum operator in a some­
what different manner. He extends the range of 
definition of the generalized coordinates by using a 
step function (J which is unity inside and zero outside 
the range of definition of the generalized coordi­
nates. He then uses the "usual" form (4) for the 
momentum operator in which the metric scale factor 
9 is replaced by the product (Jg. The differentiation 
of (J then produces delta functions at the usual inte­
gration limits of the coordinates. Effectively, 
Goebel's momentum operators are the same as our 
new form. His Eq. (AI2) or (AI3) (which are true 
only if his wavefunctions rP and y, are bounded) 
agree with our Eq. (7). Thus, Goebel's treatment 
bolsters our conclusion. 

II. THE HERMITIAN PROPERTY OF P 

Since p is real, its mean value p in any bound state 
1/1(q) of the system must also be real. Thus p = p*, 
which means that 

for any two acceptable bound-state wavefunctions 
Y,I and Y,2 is sometimes used. Equation (9) can be 
deduced from (8) if 1/11 + 1/12 and Y,I + #2 are also 
possible bound-state wavefunctions. Furthermore, 
it is asserted by Kemble2 and others that P should 
be Hermitian in the sense of (9) with respect to any 
two of its own eigenfunctions rPl and, rP2 (or, if neces­
sary, the corresponding eigendifferentials). This re­
quirement is equivalent to the orthogonality of rPl 
and rP2; it can be shown3 that such orthogonality is 
not usual for generalized momentum eigenfunctions, 
and that it is not necessary for the expansion of an 
arbitrary bound-state wavefunction in terms of the 
rP's. Thus (8) is the only Hermitian condition which 
we impose upon P. 

III. THE GENERAL FORM FOR P 

For simplicity, we assume that the quanttim­
mechanical system is merely a single particle of mass 
m, which is under the influence of a time-independent 
potential V(ql, q2, qa). Let the motion be described 
by a bound-state wavefunction 1/1(ql, q2, qaV ql, q2, 
and qa are three triply orthogonal, generalized co­
ordinates with metric 

dl = h~ dq~ + h~ dq~ + h! dq! , (10) 

and volume element 

dT = hlh2ha dql dq2 dqa = 9 dql dq2 dq3' (11) 

g( = hlh2ha) is the magnitUde of the Jacobian of the 
transformation T from Cartesian coordinates (x, y, z) 
to the generalized coordinates (ql, qz, qa). Let us 

J y,*Py, dT = J y,P*1/1* dT. 

fix attention on the coordinate ql' We suppose that 
p is its conjugate momentum, and that P is the 

(8) quantum-mechanical operator corresponding to p. 

The integration here is over the volume T in which 
the system is confined (which might be the whole 
of space). If 1/1(q) were a continuum state, then it 
would not in general be quadratically integrable, 
and (8) would be replaced by a similar result in­
volving the eigendifferentials2 corresponding to 1/1(q). 
We shall always assume, however, that 1/1(q) is a 
bound state. 

Equation (8) defines the Hermitian character 
which P must exhibit. P is said to be Hermitian with 
respect to the pair of functions 1/1* and 1/1 over the 
domain of integration T. The stronger definition 

(9) 

4 J. O. Hirschfelder, J. Chern. Phys. 33, 1462 (1960). 
i S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 123, 

1495 (1961). 
6 J. O. Hischfelder and C. A. Coulson, J. Chern. Phys. 

36, 941 (1962). 

Classically, since V is independent of the Ij's, 
we have, from (10): 

(12) 

Furthermore, if 71: is the linear momentum vector 
of the particle (71: has Cartesian components Px = mi, 
etc.), and if the vector A is defined by 

A = h~ grad ql = h1ql' 

then it follows from (12) that 

p = A·7I:. 

(13) 

(14) 

The elementary rules for the Cartesian momentum 
components imply the correspondence 

71: ~ -i grad. (15) 

Thus it seems reasonable to suppose that if (14) is 
first symmetrized to give 

7 All the wavefunctions mentioned in this paper are 
assumed to be time-independent. 
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p = HA·1C + 1C·A), (16) 

and then (15) is applied, we shall get a plausible 
form for P. This form is 

P = -i[A·grad + ! div A] 

= -i[ajaql + ! div (hllil)]' (17) 

Expression (17) is already in the required form (2), 
but if it is to be the true form for P, then it must 
exhibit the necessary Hermitian character. We can 
hope to establish this property with the help of 
Green's theorem (the divergence theorem), together 
with the identity 

lj.-*(B·grad + ! div B)lj.-

+ lj.-(B· grad + ! di v B) lj.-* == di v (lj.-* lj.-B) , (18) 

which is true for any vector B and scalar 1/1. We thus 
postulate that (17) is the true form for P, and proceed 
to investigate its Hermiticity. We will show that 
the Hermitian condition (8) is satisfied, provided 
that a certain interpretation (which will be ex­
plained) is placed on div (hllil) at points, if any, 
where iiI is not well defined. 

Setting B = A in (18), it follows, using (17), that 

f lj.-*Plj.- dT - f lj.-P*lj.-* dT 

be continuous in T, and approach their values on S 
continuously. Here i, j and k are unit vectors in 
the x, y, and z directions. These conditions can 
however be relaxed somewhat, and finite discon­
tinuities in the partial derivatives are allowed across 
another surface which divides S into two parts. 
Thus the discontinuities in grad lj.- which occur at 
nuclei will not present any difficulties. It is only the 
points where ql is not well-defined which should at 
first be excluded from the region over which Green's 
theorem is applied, and we will show that even such 
points can be included provided that the special 
interpretation of div (hlql) is made at these points 
whenever necessary. 

Before continuing, we remark that the "usual" 
form (4) for P, which we call Po, is now obtained 
directly from the formula for the divergence of any 
vector B in generalized coordinates, i.e. 

div B = hl~2ha [a:l (h2haB·ql) 

+ --!- (hahlB· q2) + --!- (h l h2B· qa) ] . (22) 
uq2 uqa 

This gives 

d· (h A) 1 ag IV lql = --;--, 
g uql 

(23) 

= -i f di v (lj.-*lj.-A) dT. 
and, making use of (17), expression (4) for Po 

(19) follows. 

From this, we see that (8) is satisfied if and only 
if the volume integral 

f div (lj.-*lj.-A) dT (20) 

vanishes. Assuming that Green's theorem can be 
applied to div (lj.-*lj.-A) over the whole of the region 
T in which the system is confined, then, if S is the 
boundary surface of T, we have 

i div (lj.-*lj.-A) dT = Is lj.-*lj.-A·dS. (21) 

If the system is artificially confined, then a physically 
acceptable wavefunction lj.- must be zero on S, and 
the surface integral vanishes. If T is the whole of 
space, then, strictly, one should first consider Eq. 
(21) for a very large region T. An acceptable lj.­
tends to zero sufficiently fast as S recedes to infinity 
to ensure that the surlace integral vanishes in the 
limit. Thus, in order to establish that the general 
form (17) for P satisfies the Hermitian condition (8), 
we need only justify the application of Green's 
theorem in the form (21). 

Sufficient conditions for the theorem to apply are 
that ajax(if;*if;A·i), ajay(if;*if;A·j) and ajaz(if;*if;A·k) 

IV. THE INTERPRETATION OF div (hlql) 
WHEN ql IS ILL-DEFINED 

It can be shown that the vector ql is only ill-defined 
in one of the following situations: 

(i) when hI is zero; 
(ii) when hI is infinite; 

(iii) when h2 or ha is zero. 

At points where ql is ill-defined, the transformation 
T from (x, y, z) to (ql, q2, qa) is not one-to-one. It 
is natural for these singular points of the trans­
formation to correspond to extreme values of ql, q2 
or qa. If ql is not uniquely defined, then neither 
is the vector A (=hlql) or the general expression 
(22) for the divergence. 

Let us suppose that the range of ql is a ~ ql ~ {:3 
and that ql is not defined uniquely at the lower limit 
ql = a, which corresponds to a singularity (or 
singularities) in T. This means that instead of 
representing a surface of constant ql in (x, y, z) 
space, ql = a represents a degenerate form of surface, 
i.e. a line or a point. We will show that under certain 
circumstances it is necessary that 

(24) 



                                                                                                                                    

342 P. D. ROBINSON AND J. O. HIRSCHFELDER 

in order that Green's Theorem be applicable to 
div (1/I*1/Ihlil) over any region T containing the point 
or line ql = a. Furthermore, if the upper limit ql = (3 
also represents a degenerate surface, we must have 

di v (h1ql) = 1: aa
g + O+(ql - a) - 0_({3 - ql)' (25) 

g ql 

[If the upper limit alone is degenerate, then the 0+ 
term is omitted from (25).] The true form for P, 
which contains the modified expression for div (h1ql), 
will now be Hermitian as required. It can be written 
in the form (6), or, if necessary, (7). 

The functions 0+ and 0_ in expressions (24), (25), 
(6), and (7) are similar to Dirac's delta functions; 
the only difference is that their effects inside an 
integral are, respectively, 

{ U(ql) o+(ql - a) dql = U(a) , a < t::; {3, (26) 

and 

{i U(ql) 0_({3 - ql) dql = U({3) , a::; t < (3, (27) 

for any continuous function UCql)' These delta 
functions have been discussed by Friedman.s 

Strictly, delta functions are meaningless unless 
appearing in an integrand. Thus (24) and (25) are 
not strict definitions of div (h l ql) at the end points 
a and {3; rather do they represent equalities of effect 
in an integration over ql' 

To justify (21), let us consider the integral of 
div (1/I*1/Ih 1ql) over a region Tl which is bounded by 
the surface ql = t, a < t < {3. If this surface is 
closed (e.g. a sphere or ellipsoid), then it forms the 
entire boundary surface 8 1 of TI' It also surrounds 
the degenerate surface ql = a, which must be either 
a point or a finite line. Alternatively, if the surface 
ql = t is open (and thus extends to infinity if the 
system is not artificially confined), then the bound­
ary 8 1 is formed by ql = t together with a surface 
or surfaces represented by extreme cases of q2 or 
qa = constant. However, these latter surfaces will 
not contribute at all to the surface integral in Eq. 
(28) which follows, for ql is everywhere tangential 
to them. In this second situation, ql = a represents 
an infinite or semi-infinite line. 

Formal application of Green's theorem gives r div (1/I*1/Ih1(h) dT £. 1/I*if;h1ckdS 

= II (if;*if;g) •• =t dq2 dqa. (28) 

8 B. Friedman, The Principles and Techniques of Applied 
Mathematics (John Wiley & Sons, Inc., New York, 1956), 
Chap. III. 

The usual divergence formula (22) implies that 

div (if;*if;hlh) - 1: a/iJql(1/I*1/Ig) = O. (29) 
g 

But 

L ~ a:l C1/I*if;g) dT = III 0:1 (if;*if;g) dql dq2 dqa 

= II [(1/I*if;g) •• =t - (if;*if;g).,=al dqz dq3' (30) 

Thus, from (28) and (30), 

f [div (if;*if;hlql) - 1: ~ (if;*if;g)] dT 
" g aql 

= II (if;*if;g).,-a dq2 dq3' (31) 

Equation (29) certainly holds for a < ql ::; t, and 
so the integrand on the left-hand side of (31) can 
only be nonvanishing if ql = a. Neither if;*if; nor g 
is ever negative. Thus, unless 

(if;*if;g).,~a = 0 for all q2 and qa, (32) 

it follows that the right-hand side of (31) is positive' 
Consequently, Eq. (31) can only hold for all ac­
ceptable if;'s which do not satisfy (32) if 

div (if;*if;h 1ql) - 1: aO 
(1/I*if;g) 

g ql 

= if;*if; O+(ql - a). (33) 

Remembering that hlql'grad is a/oql, the if; de­
pendence now disappears to give 

(24) 

With this interpretation of div (hlql), Green's 
theorem can always be applied to div (if;*if;h 1ql) 
over the region TI' Similarly it can be shown that 
regions containing points where ql = (3 are always 
allowable when the 0_({3 - ql) term is included in 
div (hllil), as in (25). Thus it is possible to apply 
Green's theorem in the form (21) over the whole 
of the region T in which the system is confined, and 
the necessary Hermiticity of P follows. 

Perhaps the simplest case where (32) does not hold 
(and thus delta functions are needed to make P 
Hermitian) arises when if; is a O'-type hydrogen atom 
wavefunction expressed in terms of the parabolic co­
ordinates u = r(l - cos 6), v = r(l + cos 6) and fjJ 

(see, for example, Schiff9
). The limits on the co­

ordinates are 0 SuS 00,0 S v S 00, and 0 S 
fjJ S 271'; g takes the value (u + v)/4. The expressions 
if;*(0, v, ¢)if;(0, v, ¢)v/4 and if;*(u, 0, fjJ)if;(u, 0, ¢)u/4 

9 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1955), 2nd Edition, Chap. IV. 
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are generally not zero. Indeed,1/; would have to 
vanish along the entire semi-axes 8 = 0 and 8 = 1r 

if they were. Thus (32) is not satisfied with ql = U 

or with ql = v. A similar situation arises when the 
prolate spheroidal coordinates ~ (ra + rb)/R, 
71 = (ra - rb)/R and cf> are employed in the wave­
functions for a diatomic ion with nuclei at A and B. 
Here ra and rb are the respective distances of the 
electron from A and B; AB = R; g = (~2 - TJ2)R3/8; 
and the limits on ~ and 71 are 1 S ~ S <Xl and 
-lSTJSl. 
lt sometimes happens that condition (32) is 

satisfied because of the nature of g. For example, 
in spherical polar coordinates (r, 8, cf» where g = 
r2 sin 8, 1/;*1/;g is zero at r = 0 (the lower limit of r) 
for all values of 8 and </>. 1/;*y,.g also vanishes at both 
the limits of f}, 8 = 0 and f} = 11", for all values of 
rand cf>. In such cases, the need for P to be Hermitian 
does not lead to the introduction of delta functions, 
and the usual form Po given by (4) exhibits the 
required Hermitian character. Even so, it is reason­
able to regard (24) or (25) as a sound interpreta­
tionlO of div (h,Ql)' Equation (24) can be rewritten as 

g div [(hl/g)qd = o+(ql - a). (34) 

It can be seen, using Green's theorem [or formula 
(22)], that the volume integral of div [(h1/g)QlJ 
vanishes when taken over any region not containing 
points where ql = ex or /3. But formal application of 
Green's theorem over the region Tl gives [cf. (28)] 

L div (~1 ql) dT == III g div (~I ql) dql dq2 dq3 

= II dq2 dq3, (35) 

which is only consistent if (34) holds. 
There is an analogy here with electrostatics. To 

take a simple example, the field E of a unit point 
charge situated in vacuo at the origin r = 0 is 

E (l/r~t. (36) 

E must satisfy div E = 0 in regions where there 
is no charge, and div E = 411"p if there is a charge 
density p. Both these conditions can be expressed 
in the single relation 

r2 di v [(l/r~fJ = o+(r) , (37) 

which is the form of (34) in polar coordinates with 
ql = r. 

10 The delta-function interpretation of div (h,qd is an 
extension of a one-dimensional result of Friedman (reference 
8), which states: "The symbolic derivative of a piecewise 
differentiable function with jumps is the ordinary derivative, 
where it exists, plus the sum of a-functions at the jumps 
multiplied by the magnitude of the jumps." 

We conclude this section by listing the forms of 
P which contain delta functions in the four most 
frequently used coordinate systems (Cartesian co­
ordinates excepted). 

General form: 

P = -i[a/aql + ! div (h]ql)]' (17) 

(i) Spherical polar coordinates (r, 8, cf», g = r2 sin 8: 

P r = -i[ajar + l/r + ! o+(r)], (38) 

Po = -i[a/af} + ! cot f} + 0+(8) - L(1I" - f})]. (39) 

(ii) Cylindrical polar coordinates Cu, cf>, z), g = u: 

P,. = -i/o/au + ![l/u + o+(u)J}. (40) 

(iii) Parabolic coordinates (u, v, cf», g = (u + v)/4: 

p .. = -ita/au + H1/(u + v) + o+(u)J} , (41) 

p. = -i{a/av + ![1/(u + v) + o+(v)]}. (42) 

(iv) Prolate spheroidal coordinates (~, 71, cf», 
g = (~2 _ r/)R3/8: 

P< = -i[a/o~ + ~/(~2 - r/) + ! o+(~ - 1)], (43) 

P~ = -i[a/oTJ - TJ/(~2 - 712) 

+ ! 0+(", + 1) - ! L(I - 71)]. (44) 

In the polar systems (i) and (ii), the appropriate 
condition (32) is satisfied and it is not necessary to 
include the delta functions in order that P should 
be Hermitian with respect to acceptable bound­
state wavefunctions. As we have shown, however, 
the delta functions occur naturally in the div (h1ql) 
contribution to P, and so it seems reasonable to 
include them in P itself. 

As Epstein points out,l1 it is possible to change 
the parametrization of a coordinate system so that 
the new g vanishes at the integration limits. Thus 
even if y,. is not required to vanish there, the new 
condition like (32) will still be satisfied and the 
corresponding P will not require delta functions 
for its Hermiticity. For example, in (iv) above, 
~ and '" can be replaced by A and p, where ~ = cosh A 
and 71 cos p,. With this parametrization, the new 
form for g is g = (cosh2 A - cos2 p,) sin A sin p" 

which vanishes at the new integration limits A = 0 
and p, 0 or 11". In such cases, because the singulari­
ties in the coordinate system are not removed, 
we believe that delta-function terms should still 
be included in P, but that their effect inside an inte­
gral is usually nullified by the new form for g. This 
is the same situation which arises directly with 
the polar systems (i) and (ii) above. An "inverse" 
example is provided by the spherical polar system (i) 
if rand 8 are replaced by new coordinates 8 i r 3 

11 s. T. Epstein, private communication (22 May 1962). 
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and t cos O. The new g is unity, and the delta- to a pair of its own eigenfunctions «I>l(~l) and 
function terms are now certainly necessary for the «1>2 (X 2) • Since 
Hermiticity of the operators p. and Pt. 

V. THE EFFECT OF THE DELTA FUNCTIONS 
ON THE EIGENFUNCTIONS OF P 

The eigenfunctions cp of Po, the usual form (4) 
for P, are 

CP(q1' q2, q3; X) = N(q2' q3)g-! exp (iXq1) , 

a .s; q1 .s; {3, (45) 

where X is the eigenvalue and N (q2, q3) is an arbitrary 
function of q2 and q3' If instead P takes the new 
form, which amounts to 

o ;t. J <I>~P<P2 dT - J <I>2P*<I>~ dT 

= (X2 - Xl) J <I>~<P2 dT, 

the non-Hermiticity is equivalent to the non­
orthogonality of <P1 and <P~. This is not a new situa­
tion, as the eigenfunctions cp of the usual form Po 
are not in general orthogonal either. In fact, 

(52) 

P = Po - ti O+(q1 - a) + ti o_({3 - q1), (7) since the discontinuities in <P have no effect on the 
integral here. As already mentioned, the non­
orthogonality of the eigenfunctions is discussed in 
the following paper. 

then the new eigenfunctions «I> are still given by 
expression (45) at all internal points a < q1 < {3, 
since the delta functions vanish unless q1 = a 
or q1 = {3 as the case may be. The only effect of 
the delta functions is to introduce discontinuities 
in the eigenfunctions at the end points a and (3. 
The nature of these discontinuities can be derived 
in a formal manner from the eigenvalue equation, 
which is 

g-! a/aq1(g'«I» + t[O+(q1 - a) 

- o_({3 - q1)]<P = iX<p. 

Equation (46) has the solution 

<p = Q(q1)CP, 
provided that 

(46) 

(47) 

dQ/dq1 + t[O+(q1 - a) - o-C{3 - q1)]Q = O. (48) 

Thus, formally, 

Q(q1) = C exp {t f' [o+(q - a) 

- L({3 - q)] dQ}, (49) 

which means that 

Q(Q1) = Cet, (50) 
and 

Q(a) = Q({3) = C. (51) 

The choice of C = e-! for the constant of integration 
enables us to take <I> = cP at all internal points 
a < q1 < {3, and <P = e-!cp at the end points. 

Because of these discontinuities in the eigen­
functions <I> at the end points, Eqs. (26) and (27), 
which define the effects of the delta functions inside 
an integral, are not satisfied with U = <I>. As a 
result, it can be shown12 that even the new form for 
P is not Hermitian in the sense of (9) with respect 

12 See Appendix where Goebel, using a different sort of 
derivation, reaches a different conclusion. 

VI. APPLICATION TO HYPERVIRIAL OPERATORS 

In classical mechanics, the time-average value of 
the Poisson Bracket of the Hamiltonian H with a 
function w of the coordinates and momenta is zero, 
provided that the function w remains finite through­
out the trajectory. Hence,4 letting the bar indicate 
the time average, 

(H, w) = O. (53) 

Correspondingly, in quantum mechanics, the diag­
onal elements of the Heisenberg equation of motion 
in the energy representation state that4.5.6.13 

(>/Ili[H, W]I >/I) = o. (54) 

Here >/I is a bound-state energy eigenfunction and 
W is the quantum-mechanical operator corre­
sponding to w. If w = Li r i °'7Ci, Eq. (53) is the 
classical virial theorem and (54) is the quantum­
mechanical virial theorem. For other choices of w, 
Eqs. (53) and (54) give the hypervirial relations. 

The quantum-mechanical hypervirial relations can 
be used to improve approximate wavefunctions. 
Suppose, for example, that >/I(q, a) is an approxi­
mate wavefunction with an imbedded variational 
parameter a. The q denotes the dependence on the 
generalized coordinates Q1, Q2, ••• , Qn' Further let 
us suppose that 

a>/l/aa = iW>/I, (55) 
13 Equation (54) requires that H be Hermitian with 

respect to W.,v as well as to ",. S. T. Epstein points out in 
University of Wisconsin Theoretical CheIDlStry Report 
WIS-AEC-37 (June 1962), for hydrogen atom bound S states, 
if W = pr (the radial momentum), then H is not Hermitian 
with respect to W>t and (54) must be corrected accordingly. 
As is shown in this same report and also by P. D. Robinson 
and J. O. Hirschfelder, in University of Wisconsin Theoretical 
Chemistry WIS-NASA-1 (August 1962), the hypervirial 
relations may be modified so as to apply to continuum 
wavefunctions and scattering problems. 
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where W is a Hermitian operator. Then, if y,(q, ao) 
satisfies (54), it is easy to show that5 the approxi­
mate energy E is stationary with respect to varia­
tions of a around ao, that is (aE/aa)a_a. = O. In 
this proof, the Hermitian nature of W was required 
first in showing that 

(iWy, I Hy,) + (y, I iHWy,) = (1jt li[H, W]I y,), (56) 

and second in showing that 

(iW y, I y,) + (y, I iW y,) = O. (57) 

The most useful hypervirials are generated by 
functions of the form 

w = !(fp + pf)· (58) 

Here f is a function of the generalized coordinates 
and p is the momentum conjugate to ql' In accord­
ance with the discussion in Secs. III and IV, the 
corresponding Hermitian quantum-mechanical oper­
ator is 

W = -i(B·grad + ! div B). (59) 

Here B = fhlQ.l = fA. Then since div B = f div A + 
A· grad f, it follows that 

W = -if(A·grad + ! div A) - !iA·grad f. (60) 

Making use of (17), Eq. (60) becomes 

(61) 

Finally, using the new form for the momentum 
operator (7), we have 

W = -iltig- t a/aql(figi ) 

+ H[O+(ql - a) - 0_({3 - ql)ll. (62) 

Here, as before, the delta functions are required 
only when the coordinate transformation from 
curvilinear to Cartesian is ill-defined at the extreme 
values a and {3 of qt. If the delta functions were 
omitted from W, Eqs. (56) and (57) might not be 
satisfied. 

Let us consider an example. In a discussion6 of 
the diatomic hydrogen ion H~, the hypervirial (in 
prolate spheroidal coordinates) 

was used. The usual formula for the quantum­
mechanical momentum operator then led to 

Wo = -i(~ a/a~ + 'I] aja'l] + 2). (64) 

The new form for the momentum operator, or (62), 
leads to 

W = Wo - !i[~ o+(~ - 1) + 'I] 0+('1] + 1) 

- 'I] 0_(1 - '1])]. (65) 

Since 2:-type H~ wavefunctions are not zero along 
the entire internuclear axis, the addition of the delta 
functions makes an appreciable contribution to the 
various integrals. In reference (6), Wo was used 
erroneously in place of W. Fortunately, none of the 
conclusions were affected. However, subsequently, 
Leon Jones found that Eq. (57) was not satisfied 
when he used Woo Indeed, it was the investigation 
of this seeming paradox that led to the present 
paper. 

By a transformation of the coordinates, a hyper­
virial operator (linear in the momentum) can be 
expressed in the form of a momentum operator in 
a new coordinate set. Let W be given by (62) and 
define the new coordinate S by the relation 

S = J dt· (66) 

In this integration, all of the q's except ql are held 
fixed. Then W may be written in the form 

W = -it (fgti ajaS«(fg)i ) 

+ ![o+(S - a') - L({3' - S)]l, (67) 

where a' and (3' are the extreme values of S. The 
expression (67) now corresponds to a momentum 
operator in an orthogonal coordinate system where 
fg is the product of the metric scale factors. It is 
easy to show that 

[W, S] = -i, (68) 

and therefore S is the coordinate conjugate to W. 
Provided that W is independent of a, the explicit 
solution to (55) is found to be5 

y,(q, a) = g-!(aO'jaql)'q,(O', q2, ... , qn). (69) 

Here ql -t O'(q, a) is a point transformation such that 

(70) 

In order that the functional form for y,(q, a) be 
suitable to represent a bound-state wavefunction, 
the following criteria for f have been found: 

(1) f must be finite and continuous for all in­
terior points. 

(2) At any interior point where f = 0, the value 
of af j aql must be finite. 

(3) At the integration limits for ql, the value of 
f/ql must be finite. 

With the use of delta functions, the third condi­
tion can now be relaxed at integration limits where 
the value of ql is finite. 
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VII. A NEW FORM FOR THE LAPLACIAN 

Corresponding to the new forms for P and 
div (hl<h) given by expressions (6) and (24) [or, if 
necessary, by (7) and (25)], it is possible to find a 
new form for the Laplacian \/2. If U(ql) is a func­
tion of ql alone, then 

\/2U = div grad U = div (hlql ·hl-
2 aUjaql) 

= [div (hi ql) ]hl-
2 au j aql + a j aql (hl-

2 a U j aql). (71) 

From (24), this becomes 

\/2U = [g-l ajaql(gh;2 ajaql) 

(72) 

If, in addition, U is a function of q2 and q3, then the 
appropriate terms in a j aq2 and a j aq3 must be added 
to the new expression (72) for \/2. 

If we are guided merely by the requirement that 
\/2, being proportional to the kinetic energy opera­
tor, is Hermitian with respect to acceptable bound­
state wavefunctions, then we are led to the form 

\/2U = [g-l ajaql(gh;2 ajaql) 

+ O+(ql - a)(h;2 ajaql + G)]U, (73) 

where G is an arbitrary real function. The choice 
G = 0 makes (73) agree with (72). 

There is a third approach. In terms of the 
usual form Po for P, the usual form for \/2U is 
-g-lPogh;2pog-I U. With the new form (6) for P, 
we find that, in order to arrive at (72), it is neces­
sary to require the convention 

O~(ql - a) = -2h~g-l ajaql[gh;2 O+(ql - a)] (74) 

for the meaning of 0;. With the aid of this conven­
tion, expressions for powers of P can be derived 
directly from (6). 

If the 0_({3 - ql) term is needed, as in (7) and (25), 
then we must have O+(ql - a) - L({3 - ql) in Eqs. 
(72), (73), and (74) instead of O+(ql - a). 

It should be observed that the delta-function 
terms in \/2 do not often have any effect. Usually 
the 0+ (ql - a) in (72) is nullified, either by the h;2 
which may be zero at ql = a, or by the g which 
appears in the volume element for an integration. 
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APPENDIX. A FORMAL TREATMENT OF 
DIFFERENTIAL OPERATORS IN A FINITE REGION. 

(This treatment is by Charles J. Goebel, Department of 
Physics, University of Wisconsin, Madison, Wisconsin.) 

We shall consider the derivative operator in a 
one-dimensional space. It is well known that if the 
inner product of two functions is defined as 

(e/>,1/;) = f g(x) dxe/>*(x)1/;(x) , (AI) 

where g(x) is a real "weight function", then the real 
anti-Hermitian derivative operator D, with the 
properties 

D* = D, D(x ) = [x D + 1]( ), 

(e/>, D1/;) = -(1/;, De/»* (A2) 

is given by 

D = g-Is ax(g! ) = ax + tg-lg'. (A3) 

The eigenfunctions <Px(x) of D, satisfying 

(A4) 

are given by 

(AS) 

the constant factor being chosen so that they are 
orthonormal 

J g(x) dx<Pt(x)<px'(x) = o(A - A') (A6) 

and complete 

f * o(x - y) 
dA<p x(x)<Px(Y) = g(x) . (A7) 

We now want to consider the case in which the 
integration in the definition of the inner product, 
Eq. (AI), extends only over a finite region, say 
a < X < {3. Formally, the results (A3)-(A7) will 
continue to hold if the limitations on the range of 
integration are effected by the vanishing of the 
weight function g outside the range a to f3. 

For instance, suppose that 

(e/>, 1/;) = J: dX¢*1/;, (A8) 

i.e. of the form (1) with 

g(x) = e({3 - x)e(x - a), (A9) 

where e(x) is the "step function" defined by 

e(x) = {I, x > 0 (AlO) 
0, x < 0, 
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with the derivative 

8'(x) = o(x). (A 11) 

The anti-Hermitian derivative D, as given by (A3), 
is then 

o(x - ex) o(x - (3) 
D = ax + 28(x _ ex) - 28({3 _ x) , (A12) 

i.e. 

(r/J, Dif;) = J: dXr/J*(X{ 8({3 - x)8(x - ex) ax 

+ o(x :; ex) _ o(x:; (3) ]if;(X) 

= f~ dXr/J*if;' + r/J*(ex)if;(ex) 
" 2 

r/J*({3) if;({3) 
2 

(A13) 

Here (A13) agrees with Eq. (7) of the text. The 
eigenfunctions of D, as given by (A5), are 

cp~(x) = (211"8({3 - x)O(x - ex))-!e'~%; (A14) 

they are orthogonal and complete, according to 
(A6) and (A7) , although the orthogonality, and 
the completeness for x and y outside the interval 
ex to {3, is only formal, because of the infiniteness 
of the negative powers of the step function. Of course 
the expansion in these eigenfunctions of a function 
defined in the interval ex to (3, 

if;(x) = J dAa(A)cp~(X), ex < X < (3, 

where a(A) = J g(x) dxcp't(xN(x) , 

is identical to the expansion in "plane waves" 
(211")-1 ei~x because the cp~(x) are identical to these 
in the region where the function g(x)if;(x) is nonzero. 
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The orthogonality requirement usually specified for the eigenfunctions q, of a quantum-mechanical 
operator P which has a continuous spectrum of eigenvalUes x, is f q,*(X)q,(X') dX = o(X - X'). The 
derivation of this result is examined; it is seen to be merely a sufficient, but not a necessary condition 
for the consistent expansion of a bound-state wavefunction if; in the form f a(X)q,(X) dX. The situation 
when P is a generalized momentum operator is investigated in detail. Such operators were discussed 
in the preceding paper. It is shown that any two of the corresponding momentum eigenfunctions 
are not usually orthogonal. Nevertheless, with the help of Fourier analysis, a consistent expansion 
if; = f a(X)q,CX) dX is established. The theory is illustrated with the familiar examples of a "particle 
in a box" and a ground-state hydrogen atom. 

When a space coordinate has a finite range, a quantum condition can be imposed on the generalized 
momentum eigenvalues so that the momentum eigenfunctions form a complete discrete orthogonal set. 
We attempt to justify the belief that such quantization is not essential unless it is necessary to ensure 
single-valued eigenfunctions. 

I. INTRODUCTION 

I T is frequently implied in texts on quantum 
mechanics that, if a quantum-mechanical opera­

tor P has a continuous spectrum of eigenvalues X, 
then any two of its appropriately normalized eigen­
functions cp(X) and cp(X') are orthogonal to each other 
by virtue of a relation 

f cp*(X)cp(X') dT - 5(X - X'). (1) 

Here 0 is the Dirac delta function, and the inte­
gration is over the whole of the space to which the 
system is confined. This relation is sometimes speci­
fied as being a necessary condition for the consistent 
expansion of an arbitrary, physically acceptable 
bound-state wavefunction if; in the form 

if; = f a(X)cp(X) dA. (2) 

In this paper, the situation when P is a generalized 
momentum operator is examined. These operators 
were discussed in the preceding paper.1 It is shown 
that any two of the corresponding generalized mo­
mentum eigenfunctions cp are not usually orthogonal. 
The only exception occurs with such functions as 
tP = (211")-! exp [iXx], where x is a Cartesian co­
ordinate; in this case, 

* This research was supported by Contract AT(1l-1)-298 
of the U. S. Atomic Energy Commission. 

t Present address: Mathematical Institute, Oxford, Eng­
land. 

1 P. D. Robinson and J. O. Hirschfelder, J. ~1.ath. Phys. 
4, 338 (1963). 

(211")-1 r: exp [i(X' - X)x] dx 

is a possible definition of 5(X - X'), and condition 
(1) is automatically satisfied. 

This apparent paradox of nonorthogonal eigen­
functions is resolved. First we study a "proof" of 
the orthogonality requirement (1), and it is seen 
that (1) is merely a sufficient, but not a necessary 
condition to be met in order that a consistent ex­
pansion (2) be possible. The relevant equations in­
volving the momentum eigenfunctions are next 
discussed. With the help of Fourier analysis, a 
consistent expansion like (2) is established even 
though condition (1) is not usually satisfied. The 
theory is then illustrated with the familiar examples 
of a "particle in a box" and a ground-state hydrogen 
atom. When a space coordinate has a finite range, 
a quantum condition can be imposed on the general­
ized momentum eigenvalues so that the momentum 
eigenfunctions form a complete discrete orthogonal 
set. In conclusion, we attempt to justify the belief 
that such quantization is not essential unless it is 
necessary to ensure single-valued eigenfunctions. 

II. THE PLAUSIBILITY OF THE 
ORTHOGONALITY RELATION 

For simplicity, we consider the quantum-mechani­
cal system corresponding to a particle in a bound 
state described by a wavefunction if; which is a 
function of a single noncyclic coordinate q. We 
suppose that the range of q is a .:::; q .:::; {3, and that 
if; is normalized with the help of an appropriate 

348 
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weighting factor w(q), so that I: ¢*(q, X)¢(q, X')w(q) dq = O(A - A') (10) 

J: 1/;*(q)l/;(q)w(q) dq = 1. (3) (similar to (1), with dT = w dq) is satisfied by the 
¢'s. Clearly (10) is a sujJicient condition for (9) 
to hold, for then the delta-function property ensures 
that the right-hand side of (9) is also a(:\); however, 
as we shall see, it is not necessary that (10) be true 
in order that (9) should be. 

Thus the particle may either have only one degree 
of freedom, or it may have more degrees of freedom 
which are not represented in ,p for reasons of sym­
metry (e.g. an s-state electron in a hydrogen atom). 
It is assumed that w(q) is not zero or infinite in the 
'open interval a < q < /3, but it may be so at the 
end points a and fJ. (A zero or infinity in w(q) is 
a natural boundary for q). 

According to the Principle of Superposition of 
States, I/;(q) can be "expanded" as in (2) in terms 
of the eigenfunctions ¢(q, :\) of an operator P, viz: 

,p(q) = f a(X)¢(q, X) dX. 
all A 

(4) 

Here a*(X)a(X) dA is the probability that X has a 
value in the interval (A, X + dA), and it follows that 

J: ,p*(q)l/;(q)w(q) dq = 1 a*(X)a(:\) ax. (5) 

Substitution for 1/;* from the conjugate of (4) into 
(5) yields 

i P 

l/;(q{J a*(X)¢*(q, A) dA ]W(q) dq 

(6) 

A relation similar to (9) which must exist between 
the I/;'s and the ¢'s is found by substituting for a(X) 
from (8) into (4), viz: 

I/;(q) = i:.a I/;(q') 

X [I ¢*(q', A)¢(q, X) ax ]W(q,) dq'. (11) 

We now go on to discuss the equations of this 
section in the case where ¢(q, X) is the generalized 
momentum eigenfunction corresponding to the co­
ordinate q. 

III. THE GENERALIZED MOMENTUM EIGEN­
FUNCTIONS AND FOURIER TRANSFORM THEORY 

In the preceding paper, l it is shown that: 
(i) the usual form Po for the generalized momen­

tum operator P conjugate to the coordinate q is 

Po = -iw-! d/dq(wi ); (12) = 1 a*(X)a(A) dX. 
(ii) if an acceptable bound-state wavefunction ,p 

Assuming that the order of integration in (6) can exists for which 
be inverted, we obtain 

1 a*(x)[a(x) - f: ¢*(q, X),pCq)w(q) dq]dA = 0, (7) then it is necessary to add to Po the corresponding 
~ delta-function terms 

and/or (b) +ti 0-(/3 - q), 
which implies that a(A) is uniquely2 defined by 

a(X) = J: ¢*(q, :\)I/;(q)w(q) dq. (8) in order to obtain a form for P which is Hermitian 
with respect to ,p* and 1/;. Here we have assumed that 
h = 1, and the more general weighting factor 
g(ql' q2, q.) of the preceding paper has been re­
placed by w(q). 

Now substitute for ,p from (4) into (8), and invert 
the order of integration, giving 

a(X) = J a(x'{f: ¢*(q, 'A)r/J(q, X')w(q) dq] dA'. (9) If no delta functions are needed in P, then the 
eigenfunctions of P are those of Po [as given by (12)], 

It is often argued that since (9) must hold for i.e. 
any a(>-) which is consistent with the expansion of 
an arbitrary acceptable I/;(q) in the form (4), then 
it must follow that a delta~function orthogonality 
relation 

2 Alternatively, one might deduce from (7) that a(}.) = 
f t/>*>/M dq + be}.), where J a*(}.)b(}.) d}. = 0, but it would 
then follow from (4) and (5) that J b*(>.)b(}.) d}. = 0, Le. 
b(}.) "" O. 

¢(q, A) = Nw-! exp [iXq], a ~ q ~ {3. (13) 

Here N is a kind of normalizing factor which is 
determined later. If either delta-function term is 
present, however, it can be formally shown 1 that a 
finite discontinuity in ¢ is caused at the appropriate 
end point. Even so, integrals like 
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i~a f(q)cp(q, X) dq 

can still be evaluated using the cp given by Eq. (13) 
if f(q) is finite in the neighborhood of a and {3. We 
have assumed that q is non cyclic, and that the 
generalized momentum eigenvalues X form a con­
tinuous spectrum from - co to + co. (If q were a 
cyclic coordinate, then the singlevaluedness of cp 
would impose a quantum condition on X). 

Equations (4) and (8) now become, from (13), 

w'y;(q) = N L: a(X) exp [iXq] dX, (14) 

and 
p 

a(X) = N i-a w!y;(q) exp [-iXq] dq, (15) 

respectively. The similarity between (14) and (15) 
and formulas for the Fourier transform and inverse 
Fourier transform is apparent. The Fourier trans­
form A(X) of a function F(q) may be defined as 

A(X) = (211-r t L: F(q) exp [-iXq] dq. (16) 

It now follows from a theorem of Titchmarsh3 that, 
if F(q') is quadratically integrable over - co ::::; 

q' ::::; co, and is of bounded variation in the neighbor­
hood of q' = q, then 

!1F(q + 0) - F(q - 0)1 

= (21l")-t l,~ L, A(X) exp [iXq] dX. (17) 

The function w'y;(q) is, however, only meaningful 
in the physically relevant range of the system 
a ::::; q ::::; {3. Thus, to establish the identification with 
Fourier-transform theory when a and (3 are both 
finite, we must define F(q) as follows: 

(i) F(q) = 0, q < a; 

(ii) F(q) = !w!(a)y;(a) , q = a; 

(iii) F(q) = w!(q)y;(q) , a < q < {3; (18) 

(i v) F( q) = !w'({3) y;({3) , q = (3; 

(v) F(q) = 0, q > {3. 

If {3 is + co but a is finite, then (iii) is extended to 
the range a < q ::::; co and (iv) and (v) are omitted. 
Similarly, if a is - co but {3 is finite, then (iii) is 

3 E. C. Titchmarsh, Introduction to the Theory of Fourier 
Integra~ (Oxford University Press, Oxford, England, 1948), 
2nd Ed., Chap. III. 

extended to - co ::::; q < {3 while (i) and (ii) are 
omitted. If a is - co and (3 is + co, then we simply 
define F(q) as w1(q)y;(q) for all q. The normaliza­
tion condition (3) ensures that F(q) is quadratically 
integrable, and we can safely assume that it is 
of bounded variation, for w1y;(q) is neither infinite 
nor wildly oscillatory if y; is an acceptable bound­
state wavefunction. With the above definitions of 
F(q), it therefore follows from (17) that 

F(q) = (21l")-! L: A(X) exp [iXq] dX, (19) 

the limiting process in (17) being understood. 
Finally, if we set 

N = (211-r t , 

then we see from (15), (16), and (18) that 

a(X) == A(X). 

(20) 

(21) 

We can thus invoke Fourier-transform theory and 
assert that, provided N is taken to be (21l")-t, then 
Eqs. (14) and (15) are mutually consistent; Eq. (14) 
becomes the same as (19), and Eq. (15) the same as 
(16). Furthermore, we note that Eq. (11), with 
substitution from (13), (18), and (20), is now just 
the exponential form of Fourier's integral formula, 
i.e., 

1 fa> fa> 
F(q) = 21l" _a> _a> F(q') exp [i(q - q')X] dX dq'. (22) 

Also Parseval's theorem for Fourier transforms 

L: F*(q)F(q) dq = L: A *(X)A(X) dX (23) 

can be identified with the probability equivalence 
relation (5). 

IV. THE NON ORTHOGONALITY OF THE 
MOMENTUM EIGENFUNCTIONS 

We turn our attention to the crucial equation (9), 
upon which claims of orthogonality of the cp's are 
based. Using Eqs. (16), (18), (19), and (21), we can 
establish the relation 

a(X) = (21l") -1 f.~a exp [-iXq] dq L: a(X') 

X exp [iX' q] dA' . (24) 

This relation (24), if the order of integration is 
inverted, is precisely the form taken by equation (9) 
when we substitute for the cp's from (13). Thus 
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Fourier-transform theory has shown that there is 
no necessity for the ¢'s to be orthogonal in order 
that (9) should hold. Consequently an expansion 
like (4), for If(q) in terms of generalized momen­
tum eigenfunctions, is possible without such orthog­
onality. 

It is interesting to examine the various forms of 
the integral 

J: ¢*(q, X)¢(q, X')w(q) dq, (25) 

which, from (13) and (20), is the same as 

(271")-1 J: exp [i(X' - X)q] dq. (26) 

There are three different cases to consider: (a) a 
and {3 both finite; (b) one finite and one infinite; 
(c) a = - co and {3 = + co. The results are: 

fj 

(a) (271")-1 L exp [i(X' - X)q] dq 

exp [i(X' - X){3] - exp [iCX' - X)a] 
= 271i(X' - X) . (27) 

(b) (271")-1 i'" exp [i(X' - X)q] dq 

= (271")-1 exp [i(X' - X)a] 

X [7I"0(X - X') + i(X' - Xrl], (28) 

(there is a similar result here if a = - co and (3 
is finite); 

inserted for the integral (25) on the right-hand side 
of (9), and then the calculus of residues is employed 
in conjunction with (15) to show that the right­
hand side of (9) does in fact simplify to a(X). 

We have seen that any two generalized momentum 
eigenfunctions with the same q but different X's are 
not usually orthogonal to one another. However, 
they are always orthogonal with respect to integra­
tion over X if they have the same X but different q's. 
Using (13) and (20), we obtain 

i: ¢*(q', X)¢(q, X) dX 

= (271")-I W -!(q')w!(q) i: exp [i(q' - q)X] dX 

= w-!(q')wt(q) o(q - q'). (30) 

This directly ensures the consistency of Eq. (11). 

V. TWO SIMPLE EXAMPLES 

To illustrate the above theory, we quote two 
familiar examples from elementary quantum me­
chanics where the generalized momentum eigen­
functions are not orthogonal, and yet a consistent 
expansion of a wavefunction in terms of them is 
possible. 

(a) "Particle in a Box" 

A particle of unit mass is restricted to the section 
o :::; x :::; L of the x axis, where it can move freely. 

(271")-1 i: exp [i(X' - X)q] dq = o(X - X'). (29) Here we have (c) 

It is only in case (c), where the range of q is from 
- co to + co, that the eigenfunctions ¢(q, X) are 
always orthogonal for different X's. It should be 
observed that the integrals are not strictly con­
vergent in cases (b) and (c). The right-hand sides 
of (28) and (29) are really Cesaro sums of order 
unity.4 In (28), (X' - X)-1 is to be interpreted 
as zero (the mean of its limits as X ~ X' + 0 and 
X ~ X' - 0) when X = X'. As regards the equality 
of effect inside the integral over X' in (9), it is per­
fectly legitimate to employ these Cesaro sums. 

In the two cases (a) and (b) where the consistency 
of Eq. (9) is not obvious, it is possible to demonstrate 
this consistency without appeal to Fourier-transform 
theory. The appropriate result (27) or (28) is first 

4 The integral f 000 f(t) dt is said to be summable by Cesaro's 
means of order 'Y ~ 0 to the sum I if 

limT_oof oT (1 - t/T)Yf(t) dt = I. 

lfn(X) = (iY sin (n~x) , n = 1,2,3 '" 

w(x) = 1; 

¢(x, X) = (271")-t exp (iXx); 

lL ¢*(x, X)¢(x, X') dx = exp [;~;(X:- ~)~J - 1 ~ 0 

(unless (X' - X)L = 2k7l" where k is an integer); 

a(X) = lL ¢*(x, X)lfn(X) dx 

= n(L7I")!(n271"2 - X2L2)-I[1 + (-t+1 exp (-iXL)]. 

It can be verified that V;n(X) = f~: a(X)¢(x, X) dX. 

(b) Ground-State Hydrogen Atom 

For a hydrogen atom in its ground state. WP. have, 
in atomic units, 



                                                                                                                                    

352 PETER D. ROBINSON 

y.,(r) = 7r -i exp [-rl, 

w(r) = 47rT2
; 

c/>(r, A) (27r2!r)-1 exp liAr]; 

L' c/>*(r, A)c/>(r, A')w(r) dr 

= t O(A - At) + 27r(A,i _ A) ;z! 0; 

a(X) = i'" c/>*(r, X)y.,(r)w(r) dr = (!l(I + £X)-2. 

Again it can be verified that y.,(r) = J'::", a()..)c/>(r,)..) dX. 

VI. CONCLUSION AND DISCUSSION 

We have seen that any acceptable bound-state 
wavefunction y.,(q) can be expanded in the form 

y.,(q) L: a()..)c/>(q, X) dX, (4') 

where the functions c/>(q, X) are the eigenfunctions 
of the generalized momentum operator P which is 
conjugate to q, i.e., 

c/>(q, X) = (27rw)-1 exp [iXq]. (13') 

The expansion coefficients are determined uniquely 
from the expression 

a(X) = J: c/>*(q, X)y.,(q)w(q) dq. (8') 

The functions c/>(q, )..), although not necessarily 
orthogonal, nevertheless form a complete continuum 
set for the expansion of acceptable y.,'s. This com­
pleteness is a direct consequence of Plancherel's 
theorem for complex Fourier transforms, which 
establishes the convergence in mean of such an ex­
pansion to any quadratically integrable function. 
From (17) and (18), it follows that the integral in 
(4') is convergent to y.,(q) in the open interval 
a < q < {:3. If the end points q = a and/or q = (:3 
are finite, then Eq. (4') only holds at these points 
when w!y., is zero there. We should not expect 
(4') to be true otherwise, for then it is necessary to 
include the delta-function terms in the operator P, 
with the resultant uncertainty in its eigenfunctions 
at the end points. 

An interesting situation arises when the range of 
q from a to (:3 is a finite one. The functions c/>(q, X) 
can then be made orthogonal to one another for 
different ).. by imposing a quantum condition on )... 
The orthogonality integral (25) takes the form (27), 
which always vanishes if 

)..'-)..= 2k7r/({:3-a), k ±1,±2,···. (31) 

Condition (31) is satisfied provided that the mo­
mentum eigenv~lues are 

X = C + 2k7r/({:3 - a), k = 0, ±1, ±2, "', (32) 

where C is an arbitrary constant. Any two members 
of the countably infinite subset {c/>k(q)} of the con­
tinuum set {c/>(q, )..) I, where 

c/>h(q) = (27rw)-1 exp {£q[C + 27rk/({:3 - a)]}, 

k = 0, ±1, ±2, "', (33) 

thus satisfy the orthogonality relationship 

.r: c/>t(q)c/>k·(q)W(q) dq = (27rrl({:3 - a)okk" (34) 

We can see that the set of functions {c/>k(q)} is also 
complete. There can exist no normalized function 
G(q) orthogonal to all the c/>k(q)'S, for this would imply 
the existence of a function (27rW)tG(q) exp (-iqC] 
with all its Fourier coefficients over a ~ q ~ f1 
equaling zero, which in turn would imply that G(q) 
is zero.5 The set {c/>k(q)} is thus closed, and there­
fore complete.$ 

The functions c/>k(q) , which are normalized if multi­
plied by (27r)i({:3 - a)-i, form a complete orthogonal 
set of discrete generalized momentum eigenfunc­
tions. Von Neumann6 would insist that the quantum 
condition (31) is necessary, and that the c/>k(q)'S 
are in fact the only true momentum eigenfunctions, 
for they are mutually orthogonal and the operator 
P is thus Hermitian with respect to any pair of 
them. However, we have seen that the orthogonality 
is unnecessary for the expansion of an acceptable 
y.,(q), and in the preceding paperl it was shown that 
on physical grounds, P need only be Hermitian 
with respect to acceptable bound-state wavefunc­
tions. Thus there would seem to be no direct need 
for the quantum condition (31). Furthermore, when 
one or other of the limits a and {:3 is infinite, such a 
quantum condition is not possible. In this case, if 
one insists on the orthogonality of eigenfunctions, 
one must reject P as a quantum-mechanical opera­
tor which represents an observable quantity. We 
are inclined to believe that this orthogonality is not 
essential, and accordingly that the quantum condi­
tion (31) is not necessary. The condition is indeed 
rather a strange one, because of the arbitrariness of 
the constant C which is introduced into the eigen-

• R. Courant and D. Hilbert, Methods of Mathematical 
Physics (Interscience Publishers, Inc., New York, 1953), 
VoL I, Chap. II. 

e J. Von Neumann, Mathematical Fourn!ations of Q:<ant'lfm 
Mechanics, translated by R. T. Beyer (PrInceton Umversity 
Press, Princeton, New Jersey, 1955), Chap. II. 
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values. We think that the only occasion on which 
a generalized momentum eigenvalue is quantized 
is when this is necessary to ensure that the eigen­
function is single valued. This happens if q is a 
cyclic coordinate, for example an azimuthal angle. 

The situation discussed above for a finite range of 
q is curious, but does not lead to any obvious para­
doxes. t/;(q) can either be expanded as in (4') in terms 
of the complete continuum set {¢(q, }..) I, or it can 
be expanded as an infinite sum in terms of the com­
plete discrete set {¢k(q) I. In the latter case, we have 

'" 
t/;(q) = L ak¢k(q) , (35) 

k=-oo 

where 

ak = 21T(f3 - a)-] I: ¢1(q)t/;(q)w(q) dq. (36) 

The series (35) is effectively a Fourier-series expan­
sion for a function of period (f3 - a) which takes the 
form (21TW) +1 exp [-iqC]t/;(q) when a ::; q ::; f3. 
Like the integral in (4'), this series is convergent 
in the open interval a < q < f3, but not at the end 
points unless wit/; is zero there. An apparent paradox 
arises if we expand an arbitrary momentum eigen­
function ¢(q, X) in terms of the set {¢k(q) I, i.e. 

'" 
¢(q,X) = .L: Ck¢k(q) , (37) 

k=-oo 

and then apply the operator P. This gives, formally, 

'" 
X¢(q, X) = L [C + 21Tk/(f3 - a)]Ck¢k(q). (38) 

k--oo 

If (38) were true, it would follow from the orthog­
onality of the ¢/s that}.. = C + 21Tk/(f3 - a) 
for all k. However, to obtain (38) we have effectively 
differentiated (37), term by term, with respect to q, 
and the explicit form of Ck shows that this is not 
allowed because the series in (38) is divergent. 

Finally we remark that, although for simplicity 
we have discussed merely a one-dimensional system 

in this paper, the extension to include more di­
mensions is not difficult. For instance, in a system 
described by three generalized coordinates (q], q2, qa), 
the eigenfunctions of the momentum operator p] 
conjugate to the variable q] are l 

c/>(q], q2, q3; X) 

= N(q2, q3)g-!(q], Q2, q3) exp [iXqd. (39) 

Here g is the Jacobian of the transformation from 
Cartesian coordinates to the generalized coordi­
nates, and N is an arbitrary function of Q2 and qa. 
¢(q], q2, qa; X) can be made a suitably normalized, 
simultaneous eigenfunction of PI, q2, and qa, if we 
take N to be7 (21T)-1 O(q2 - q~) O(q3 - QD. With this 
choice for N, an arbitrary bound-state wavefunction 
t/;(qJ, q2, q3) can be expanded in the form 

t/;(Q] , q2, q3) 

= III a(X)¢(q] , x; q2, q~; q3, qD d}.. dq~ dqL (40) 

where 

a(X) = Jjf ¢*( q), X; q2, q~; qa, qD 

X t/;(q] , q2, q3)g(q], q2, q3) dq] dq2 dqa. (41) 

The delta-function factors in N(q2' qa) now effectively 
reduce the system to a one-dimensional one. 
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in Complex Electron Configurations* 
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Simplified expressions for the matrix elements of electrostatic interactions both within and between 
several types of complex electron configurations have been obtained by the application of angular­
momenta recoupling techniques. The use of these recoupling techniques avoids the usual extensive 
calculation of the sums of products of the matrix elements of tensors of the types V«k and Uk. The 
derived expressions involve the sums of products of coefficients of fractional parentage and n - j 
symbols, and as such, are amenable to machine computation. 

INTRODUCTION 

STUDIES of the complex spectra of rare-earth 
and actinide ions are complicated by the 

frequent requirement of a detailed knowledge of 
the structure of quite complex electron configura­
tions, and in some cases a knowledge of the electro­
static interactions between the configurations is 
necessary. The configurations of greatest interest 
are typified by f, n', n'l", and fl'2. The electro­
static matrices of all the f configurations are well 
known and will not be discussed. Of primary interest 
will be the interactions of the electrons outside the 
f core with those of the f core. The number of 
states occurring for these configurations is very 
large, and hence it is desirable to be able to compute 
the matrix elements on a high-speed computer. 
However, before calculations such as these are 
attempted, it is essential that the expressions for 
the matrix elements be put in as simple a form as is 
possible. 

Racah1 and Arima et al.2 have given general pro­
cedures for calculating the matrix elements of direct 
and exchange-type interactions between outer elec­
trons and an equivalent electron core. Their treat­
ment of exchange-type interactions requires the ex­
panding of the exchange interactions into the sums 
of direct interactions. This approach-although 
equivalent, in its final results, to the method out­
lined in this paper-is complicated by the appearance 
of sums of products of tensors of the types V<k 
and Uk. In seeking simplifications of their formulas 
and in making the formulas amenable to machine 

* Work done under the auspices of the U. S. Atomic 
Energy Commission. 

t Present address: Division of Chemistry, Argonne 
National Laboratory, Lemont, Illinois. 

1 G. Racah, Phys. Rev. 62, 438 (1942). 
2 A. Arima, H. Horie, and Y. Tanabe, Progr. Theoret. 

Phys. (Kyoto) 11, 143 (1954). 

computation, it is desirable to avoid having to 
evaluate the matrix elements of several tensorial 
quantities prior to the actual evaluation of the elec­
trostatic matrix elements. In the present formulation 
of the problem, the need to evaluate the matrix 
elements of the double tensors V<k is overcome by 
suitably recoupling the angular momenta of the 
electrons involved in the electrostatic interactions. 
As a result, the formulas may be expressed in a 
concise manner that displays clearly the properties 
of the angular momenta involved by the use of 
n - j symbols. a 

N'l" CONFIGURATIONS 

It will be assumed that the two inequivalent 
electrons are coupled together and then coupled to 
the l" core to form a total-orbital and a total-spin 
quantum number. For complete generality, consider 
the matrix elements of the angular part of the elec­
trostatic interaction between a configuration tl'l" 
and a second configuration lnl"'l'·. We may write, 
for the matrix elements of the electrostatic inter­
actions of the inequivalent electrons with the zn 
equivalent electron core, 

(In SILI(sl', sl")S(Li; S2L2 

X II: (C~'C;)llnSaLa(sl"',st")S~L~; S4L4) 

i<i 

= n I: (l/td I~)(l/ta{ 1~)(ln-lasL, sl, SILl 
y, 

X (sl',sl")SjLf; S2L21(C~'C~)lln-IaSL,sl, 

X SaLa(sl'" , Sli")S~L~; S4L 4) , (1) 

where the (l/t{ I ~) are the usual coefficients of 

3 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. 
Wooten, The 3-j and 6-j Symbols (Technology Press, Cam­
bridge, Massachusetts, 1959). 
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fractional parentage4.5 and the scalar products, 
(C~ . C~), are tensorial sets of spherical harmonics.6 

The matrix element in (1) may now be examined. 
First a series of recouplings6 of the type 

«3s)81 , (ss)8r; 82 I 3(s8Dui 82) 

(l'l"L: Ile~lll"'l;'L~) 
= (-1)/ "+L.'+k([l'][l"'][LmLml 

X [I' k l''']{Li L~ k} S(l", r'), 
o 0 0 l'" l' l" 

(7) 

= (_1)S+'+8"+8'([81][U])!{~( 82 81
} 

whereas if the coefficients of R"(U"; lli.) are re­
(2) quired, we write 

8 s u 

is made, where [u], etc., are understood as (2u + 1), 
etc. Upon recoupling in both spin and orbital space, 
the matrix element in right-hand side (rhs) of (1) 
becomes 

L: (_1)8"+8"+L"+L,' 
,,~ 

rI''h' 

x S(u, u') SeA, A') S(82 , 84) 5(L2' L4) 

X ([81][83][Ld[L3])l[uHA]{~i 82 81}{~~ 84 83
} 

8 suS s u' 

x {~i L2 Ll}{~~ L4 L3}CUA I(C~'C~)I u'A') , 
L 1 ALl A' 

where 

(uA '(C~·C;)i u'A') 

= «s80u, (lLDA I(C~ ·C:)I (s8~)u', (lL~)A'). (4) 

Thus there remains only to evaluate the matrix 
elements in (4) for three electrons, and then perform 
the sum over u and A in (3). For direct interactions 
the calculation is quite straightforward,6 and after 
application of the Biedenharn-Elliott sum rule3 to 
the sum over A, the matrix element on the rhs 
of Eq. (1) becomes, for direct interactions, 

(_l)L"+L,+L.+!+k [l] [l k 1] (L{ Ile;11 LD 
000 

(l'l"Ll IIC~ Iil"'t"LD 
( -1/'+I,,+!i'+L"+"([l"]W'j[Li][Lmt 

X [I" k 1i'1{~i L~ k} o(l', l'''). 
o 0 0 Z" l" l' 

(8) 

The coefficients of Rk(l'l"; l"'li') are trivial and need 
not be considered here.6 If the electrons external 
to the core are equivalent, we need only replace 
the matrix element (Lr IIC~11 Lf) in (5) by 

(-1)1'[l'Jr
z' k l'l(L[ IIUkl1 Ln, (9) 

lO 0 0 

(10) 

If the direct interactions between Z"l'2 and r1lllZ" 
are of interest, we may evaluate the coefficients of the 
radial integrals Rk (ll'; ll"') and R" (ll'; llh) by putting 
l' == I" in Eqs. (7) and (8). 

The exchange-type interactions may be treated 
by performing a recoupling of the angular mo­
mentum such as to interchange the positions of two 
particles. The angular part of the interactions will 
give rise to the coefficients of three basic types 
of radial integrals: Rk(ll'; l"'l), R"(ll"; 1i'l), and 
Rk(l'l"; li,Z"). The third type is amenable to the 
usual two-electron treatmentS and will not be dis-

X {L~ k L:}C1/;1 IIUkl1 1/;3)' 
Ll L2 L3 

where 

(5) cussed. The calculation of the matrix elements of 
the exchange interactions proceeds, in a manner 
similar to that used for the direct interactions, 
by first performing a recoupling on the rhs of 
(4), summing over and eliminating the new angular 
momenta (spin and orbit) that enter the expression, 

(6) returning the result to Eq. (3), and perlorming 
the summation over u and A. The procedure is 
lengthy though quite straightforward, and hence 
only the results are given. 

If the coefficients of the radial integral Rk(ll'i ll"') 
are required, the matrix element in (5) is evaluated 
by putting 

4 G. Racah, Phys. Rev. 63, 367 (1943). 
6 G. Racah, Phys. Rev. 76, 1352 (1949). 
8 U. Fano and G. Racah, Irreducible Tensorial Sets 

(Academic Press Inc., New York, 1959). 

For Rk(U'; l'''l), the matrix elements on the rhs 
of Eq. (1) are given by 

n[lJ([l'J [I'''J [Ld [L3] (LmL~] 
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X [1 k ['] [111' k I] 0(1", lie) 
o 0 0 0 0 0 

j
s S3 ! }{l" 1'" L~ L3} 

X ~ (lfl {I~)(lfa{ I~) ~l S: ~{ 1', k 1 ~l , 

2 Sa 2 Ll I L2 L 
(11) 

while for Rk(ll"; li'l), the matrix elements on the 
rhs of Eq. (1) are given by 

n[l]([l"] We] [Ld [La] [L{][L~] [Sd [S3] [S{][Sm 1 

X (_1)8"+8"+L"+L"+k [1 k ["] [to k 1] 0(1', I"') 
000 000 

j
s S3 ! }{l' r' L~ Lal 

X ~ (lfl {1~)(lf3{ I~) ~l S: ~{ 1': k 1 ~lf' 
2 S3 2 Ll 1 L2 L 

(12) 

where the last factor in each expression is a standard 
12-j symbol.3 

In the case in which the electrons added to the In 
core are all equivalent (though l' r5- I), the expression 

2n[1] [l']([Ld [La] [L{] [L~] 

X [Sd[S3][SmSm 1( _1)k [1 k 1']2 
00 0 

{
s Sa ! }{l' [' L~ La} 

X ~(lfl{I~)(ifl3{1';;) ~1 S: ~{ [', k 1 ~1 (13) 

2 S3 2 Ll 1 L2 L 
results. 

For the interaction between rl,2 and rl'''li., we 
put l' == l" in Eqs. (11) and (12). 

These formulas undergo considerable simplifica­
tion when one or more of the angular momenta in 
the n-j symbols are zero. 

CONFIGURATION INTERACTION 
BETWEEN l"l' AND l"l" 

Judd7 has already treated the electrostatic inter­
action within the configuration rl'. His expressions 
may be readily generalized to give for the direct 
interaction the coefficients of Rk (ll'; ll") as 

(rS1L 1sl'; S2L2 12: (C~·C~)I rS3Lasl"; S.L.) 
i<i 

= ([l'][l,,])i[l](_l)L.+z+L. 0(S2, S4,) fJ(L2' L 4 ) 

X [I k l] [l' k l"]{l" k l'l(lfl IIUklllfa), (14) 
o 0 0 0 0 0 Ll L2 LJ 

whereas for the exchange interaction the coefficients 
7 B. R. Judd, Phys. Rev. 125, 613 (1962). 

of Rk(ll'; l"l) are given by 

n[l]([l'] [l"] [Sd [Sa] [Ld [L3]) 1 

X (_1)8.+8,[1' k 1][1" k~l] 
o 0 0 0 0 0 

{
L L3} 

X ~ (lfl {1~)(lf3{ I~){S S Sa} 1 k 1" . 

S S2 SI Ll l' L2 

CONFIGURATION INTERACTION 
BETWEEN In AND l"-11' 

(15) 

Racah l has obtained an expression for the matrix 
elements of the electrostatic interaction between d:' 
and dR-Is. This result may be considerably simpli­
fied to give, for the coefficients of Rk(ll; ll'), 

(1"S2L2 1 2: (C~·C~)I[n-ISaLal'S4L.) 
i<i 

= (_I)L,+L,+z fJ(SI' Sa) 0(S2, S4) 0(L2' L4) 

X [l](n[IHl'])l[l k l] [l k 1'] 
000 000 

X 2: (lf2{llfl)(ifI, II Uk illfa){L3 k Ll} , (16) 
if-. 1 L2 l' 

where ifll are the parents of the S2L2 state of r. 

CONCLUSIONS 

The application of simple recoupling techniques 
results in formulas which are considerably more 
amenable to machine calculation. The appearance 
of the 9-j and 12-j symbols in (9) and (10) need not 
disturb us, as they may be readily evaluated by 
standard programming techniques. The present 
formulas possess the advantage of requiring a 
minimum use of the sums over coefficients of frac­
tional parentage with the emphasis placed on the 
coupling of the electrons. It might be hoped that 
these formulas could be further simplified. However, 
except for the trivial cases in which one (or more) 
of the inequivalent electrons is an 8 electron, no 
fundamental simplification seems possible without 
explicit formulas for the coefficients of fractional 
parentage. 

These results are presented with hope that they 
will eventually lead to the machine computation of 
the energy matrices of many of the configurations 
discussed in this paper. 
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The partial wave series for a relativistic charged spinIess particle is not uniformly convergent and 
is difficult to evaluate numerically in the forward direction. The singularity in the scattering amplitude 
at the forward direction which leads to this nonuniform convergence is separated and given explicitly 
in a closed form so that the partial wave series may be accurately evaluated numerically. 

THE author has recently carried out a partial 
wave analysis of the potential scattering of 

relativistic spinless charged particles. 1 For both 
the relativistic and nonrelativistic Schrodinger 
equation, the long-range nature of Coulomb scatter­
ing gives rise to a Faxen-Holtsmark series which 
does not converge satisfactorily in the forward 
direction. N onrelativistically, this problem is solved2 

by dividing the scattering amplitude into a point 
Coulomb part and a "nuclear" part. The point 
Coulomb part is known in a closed form and the 
nuclear part is the difference of the original Faxen­
Holtsmark series and the Faxen-Holtsmark series 
for the point Coulomb scattering. 

In the relativistic case, however, the scattering 
amplitude for the point Coulomb potential is not 
known in a closed form. To circumvent this difficulty, 
we have found a series which (a) has a sum known 
in a closed form and (b) has a behavior for large l 
such that when it is subtracted from the Faxen­
Holtsmark series, a difference series results which 
is absolutely convergent and can be summed 
numerically. In notation similar to that of Schiff, 
the Faxen-Holtsmark series for relativistic point 
Coulomb scattering is 

f«() = 2~k :t (2l + 1) exp (2i7]1 + 2iol)P1(cos e), (1) 
t 1-0 

where the 01 are the "nuclear" phase shifts, calcu­
lated using relativistic Coulomb wavefunctions, and 
where the 7]1 are the relativistic Coulomb phase 
shifts, 

7]1 = arg [rCl + 1 + iA - TI)] + t1l"TI, 

TI = ! (2l + 1) [1 - (1 - (2l~\)2YJ. 

Here "( = ZlZ2e2 in units such that Ii = c = 1, 
Zl and Z2 being the charge on the particle and on 
the nucleus; and A = "(/(3, (3 being the relative 
velocity of the particle and nucleus in the center­
of-mass system. 

The following considerations lead to the separation 
of (1) in a manner analogous to the familiar non­
relativistic separation. In Eq. (I), the 01 approach 
zero rapidly for large l so that the properties of 
the 7]1 alone determine the nature of the convergence 
of the series. The factor (2l + 1) exp (2i7]/) can be 
expanded as follows: 

. r(l + 1 + iA) 
(2l + 1) exp (2z7]/) = (2l + 1) r(l + 1 _ iA) 

+ . 2 r(l + 1 + 2ZA) 
1I"Z"( r(l + 1) 

- (4i-/A + !11"2/) 2l ~ 1 + o({z) + (2) 

The first term in this expansion is the nonrelativistic 
Coulomb part of the series. The next two terms in 
(2) have been chosen to include everything of 
order ZO and r 1 and still have a known closed form 
for their sums with P/(cos (). Equation (1) may 
then be rewritten in analogy with Schiff's equation 
[reference 2, Eq. (20.24), p. 120]: 

f(8) = fe(8) + !tC() + M() 

+ 2~k f [(2l + 1) exp (2i7]1 + 2io l ) 
~ 1-0 

_ (2l + 1) r(l + 1 + iA) _. 2 r(i + 1 + 2iA) 
r(l + 1 - ZA) zry r(l + 1) 

1 R. D. Hill, J. H. Hetherington, and D. G. Ravenhall, + (4' 2 1 2 4) 1 ] ( 
Phys. Rev. 122,267 (1961). ~A"( +"211" "( 2l + 1 PI cos (), 

I See for example, L. I. Schiff, Quantum Mechanics 
(3) 

(McGraw-Hill Book Co. Inc., New York, 1955), 2nd Ed., 
Sec. 20. where 
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A 1 r(1 + i"A) 
fc( e) = - 2k (sin !0y+2i). r(1 - i"A) 

1 ~ r( l + 1 + i"A) 
= 2ik f='o r(l + 1 - i"A) PI (cos 0), 

as in the nonrelativistic case, and where 

1 (0) = 7r"{2 r(1 + 2i"A) P2i~(sin !e) 
1 2k (2 sin !e)I+2'~ 

i7r"{2 ro r(l + 1 + 2i"A) 
= 2ik t; r(l + 1) PI (cos e), 

and 

Me) = ik (4i"A'/ + 7r2t)K (cos !e) 

= ;;; ~ (4i"A"{2 + 7r2t) 2l ~ 1 PI (cos e). 

Here P 2 ,,(sin !e) is a Legendre function of imaginary 
order and K (cos !e) is the complete elliptic integral 
of the first kind. The indicated summation of the 
series for Me) is accomplished by writing Pl(cos e) 
in its integral form and interchanging the summation 

and the integration, while Me) can be found by 
integration of a modified form of the generating 
function for Legendre polynomials. 

It should be emphasized that Eq. (3) is exact; 
the series in this equation being just the difference 
between the exact expression and the terms Ie + 
11 + 12' This series is absolutely convergent (and 
therefore its sum is finite) for every angle O. Thus 
the expressions f c (e), f 1 (e), and f 2 (e) contain all 
parts of the amplitude which tend to infinity as 
e approaches zero, since it is this property of the 
amplitude which causes the Faxen-Holtsmark 
series to be not uniformly convergent. The series 
in Eq. (3) can be summed numerically and the 
expressions fc(e), fl (e), and Me) can be evaluated 
from the closed expressions given, so that an 
accurate partial wave analysis can be made. 
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The analytic properties of partial wave amplitudes are studied for complex energy and angular 
momentum. The properties of the wavefunctions are first obtained by standard methods in the 
theory of differential equations for general classes of potentials, and the effects of the dominant 
singular term in the potential near the origin are investigated. These include the appearance of 
branch cuts in the angular-momentum variable for potentials which are singular like z-2, and the 
location of Regge poles for more singular potentials. The trajectories of Regge poles are also studied 
with particular reference to their behavior in the angular-momentum plane as the energy tends to 
infinity. An example is given of a singular potential in which the trajectories move to infinity in a 
complex direction, contrary to the normal behavior for which they tend to negative integers. The 
real sections of Regge surfaces are also briefly discussed. 

1. INTRODUCTION 

T HE theory of potential scattering with complex 
energy and angular momentum has been de­

scribed in a detailed paper by Bottino, Longoni 
and Regge. l Their work is based on the integral 
equations for the wavefunctions and the Jost scatter­
ing solutions. For some purposes however, it is more 
convenient to use the general theory of differential 
equations to study the wavefunctions. This was first 
used in this context by Mandelstam2 and forms the 
basis of the first part of this paper. 

In Sec. 2 we study the wavefunctions for various 
types of potential V with particular reference to the 
form of the potential near the origin. When V(z) = 

O(Z-2) near the origin, we obtain the usual analyticity 
of the wavefunctions c/>(X, k, z). When V(z) = O(Z-2) 
the indicia I equation clearly exhibits a branch cut 
fixed in the X plane, and this result is not altered 
if V(z) itself has a branch cut at the origin. We study 
also the situation when V(z) is more singular than 
Z-2 at the origin and the Schrodinger equation has 
solutions of normal or subnormal type.3 Then the 
wavefunctions have an essential singUlarity at the 
origin. 

In Sec. 3 we obtain the corresponding properties 
and symmetries of the Jost functions and the S 
matrix. When there is a branch cut in the angular­
momentum plane (X), we find that there is symmetry 
between the right half-plane and the left half-plane 
through the branch cut on to the next sheet. For a 
singular potential (more than Z-2) this symmetry 

1 A. Bottino, A. M. Longoni, and T. Regge, Nuovo 
Cimento 23, 954 (1962); T. Regge, Nuovo Cimento 14, 951 
(1959); ibid., 18, 947 (1960). 

2 S. Mandelstam, University of Birmingham preprint 
(February 1962). 

3 A. R. Forsyth, Theory of Differential Equations (Cam­
bridge University Press, Cambridge, England, 1902), Vol. 3. 

is on one sheet only and there are an infinite number 
of poles in the right half-X plane.4

•
5

•
6 The properties 

of Regge surfaces and trajectories (the paths of 
poles of the S matrix) are studied in Sec. 4. The fact 
that they are defined by analytic functions follows 
from the implicit function theorem.7

•
8

•
9 By finding 

the asymptotic form of the Jost functions as the 
energy increases through real values to infinity, 
we show that the trajectories tend either to Xl + i 00 

or to negative half integers in the X plane. In Sec. 5 
we see that the former possibility occurs for the 
singular potential of Wannier4

•
5

; it is probable that 
the latter is always valid for nonsingular potentials.lo 

In Secs. 6 and 7 we note the example of relativistic 
Coulomb scattering which illustrates our general 
results, and we indicate the main features of the 
real sections of Regge surfaces. 

2. WAVEFUNCTIONS FOR NONRELATIVISTIC 
POTENTIAL SCATTERING 

In this section we show that the analytic properties 
of the wavefunctions for complex energy and complex 
orbital momenta follow from general theorems on 
differential equations. In particular, we study the 
occurrence of branch cuts in the complex angular­
momentum variable and the distribution of poles in 
relation to the behavior of the potential at the origin. 

The Schrodinger equation for the radial part 

• E. Vogt and G. H. Wannier, Phys. Rev. 95, 1190 (1954). 
6 G. H. Wannier, Quart. Appl. Math., 11,33 (1953). 
6 E. Predazzi and T. Regge, Nuovo Cimento 24,518 (1962). 
7 E. Hilb, Encyclyclopedie der Mathematik Wissenschaft 

(B. G. Teubner, Leipzig, Germany, 1915), Vol. 2, Part 2. 
8 S. Bochner and W. T. Martin, Several Complex Variables 

(Princeton University Press, Princeton, New Jersey, 1948). 
• Similar results have been obtained by J. R. Taylor, 

Phys. Rev. 127, 2257 (1962). 
10 A. Ahmadzadeh, P. G. Burke, and C. Tate, UCRL, 

10140, March 1962. 
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R(z) = ",.(z)/z of the wavefunction for a spherically 
symmetric potential /i2V(z)/2m, can be written 

",."(z) + k2 ",.(z) - [(X2 
- !)N]",.(z) 

- V(z)""Cz) = 0, (2.1) 

where X = l + ~ and E = /i2k2 /2m. When the 
potential is zero, the solutions behaving like z·>'+i 
at the origin are 

cPo(±X, k, z) = 2·>'r(1 ± X)zlk"'>'J.>.(kz). (2.2) 

At integer values of X, these two solutions are no 
longer independent; however the relation 

W[c/>o(X, k, z)c/>o( -X, k, z)] = c/>o(X, k, z)c/>~( -X, k, z) 

- c/>~(X, k, z)c/>o( - X, k, z) = -2X (2.3) 

is still true. 
For kz ;;z!' 0, J>.(kz) is an entire function of X 

and k. Then the functions cf>o(±X, k, z) have simple 
poles in X at the negative and positive integers, 
respectively, and are entire functions of k2

• In the 
z plane, the origin is an algebraic singularity whose 
type depends upon X. In considering the correspond­
ing properties for V ;;z!' 0, Poincare's7 theorem for 
linear differential equations implies that the X 
dependence of the Jost functions, and hence of the 
S matrix, will be determined by these wavefunctions. 

The Jost functions are given by the Wronskians 
of the wavefunctions cf> with scattering solutions of 
(2.1) which behave like exp [=Fikz] as z -) co. For 
V = 0 these functions are 

IoCX, +k, z) = (7rkz/2)iH~2)(kz) 

X exp [-i7r(X + t)/2], (2.4) 

class of potentials with strong singularities at the 
origin, provided only, that the integral in (2.6) is 
convergent at infinity. Under these conditions, if V(z) 
is analytic for Re z > 0 and continuous on Re z = 0, 
Bottino et aZ.1 have shown that: t(X, ±k, z) is 
analytic in {X I X ;;z!' co} X {k I ± 1m k < O} and is 
continuous on {X I A ;;z!' co} X {k I 1m k = O} for all 
z outside some immediate neighborhood of the origin. 

They show that these domains can be united to 
give the whole finite k plane with branch cuts along 
the imaginary axis; the latter are only kinematic in 
character for 11m kl < tl' for a potential with an 
exponential tail of range 1/1'. These properties do 
not depend on the nature of V(z) near zero, and will 
carryover to the Jost functions. 

To obtain the behavior of c/>(±X, k, z) in A, we 
study this function for z near the origin by the 
standard method of solving (2.1)-by a power series. 
(This method was first used in this context by 
Mandelstam.)2 In the following, we shall require of 
V(z) that the interior points of the interval (0, co) 
be ordinary points of (2.1), and the point at infinity 
an irregular point of grade one.3 Specific require­
ments concerning V(z) at zero will be stated as they 
arise. By standard theorems in the theory of dif­
ferential equations, this series will be uniformly 
convergent in any finite domain of the A X k product 
plane for z in a region determined by the nearest 
singUlarity of lV(z), except at certain isolated 
points in X. It is necessary only that Iz2 V(z) I be 
bounded in this region.3 First consider potentials 
having an expansion 

"" 
iV(z) = L amz"'. (2.7) 

",=0 

IoCX, -k, z) = (7rkz/2)IH~I)(kz) 

X exp [i7r(X + ~)/2]. 
This excludes V(z) '" zr>/q near the origin, which 

(2.5) will be considered below. Substituting (2.7) and the 

The properties of t(X, ±k, z) have been studied by 
Bottino, Longoni, and Regge1 (when the potential 
is nonzero) from the Green's function integral 
equation 

teA, ±k, z) = toeA, ±k, z) 

+ i7rr)i f."" dH€)iV(€)!(A, ±k, €) 

X [H~I)(±k€)H~2)(±kz) 

- H~I)(±kz)H~2)(±k€)]. (2.6) 

For z in some neighborhood of the origin but not 
actually zero, the analytic properties of t(X, ±k, z) 
in X will not depend upon the behavior of the poten­
tial at the lower limit. We can then admit a large 

expansion 

"" ,1.( k) '"" (S"+nc 'l'1T, ,z = L..JZ n, Co ;;z!' 0 (2.8) 
.. -0 

into the Schrodinger equation, we obtain recurrence 
relations for the coefficients Cn. The roots of the 
indicial equation are 

ITI, IT2 = ~ ± (X2 + ao)t, (2.9) 

while the coefficients Cn = c .. (IT, k) are given by 

(-lrc.oF,,(IT, k) 
Cn = fo(IT + l)fo(1T + 2) ... fo(1T + n) , (2.10) 

where IT denotes ITI or IT2, to(1T + n) = n(2IT + n - 1), 
and 
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-al e - az -aa -an 

fo(u + n - 1) -al e - a2 -U n - 1 

Fn(u, k) = 
0 fo(u + n - 2) -a, -an - 2 (2.11) 

0 

Clearly, c .. (u, k) is a rational function of u and an 
entire function of e. Further, Cn is continuous in the 
parameters a" of the potential. The zeros of the 
denominator occur for those values of u at which 
the power-series solutions are no longer linearly 
independent, i.e. 

n = 1,2, .... (2.12) 

Except for these points, cp(±A, k, z) is represented 
by a uniformly convergent power series (2.8) for 
z inside the circle of convergence determined by 
iV(z). It is therefore an entire function of k2 and 
a meromorphic function of A, the poles being given 
by (2.12). This result can be extended by analytic 
continuation to the holomorphy domain of z2V(z) 
for an energy independent potential. 

For ao = 0; UI, U2 = t ±A, and the poles of 
cp(±A, k, z) correspond to A = Ttn. When ao ~ 0, 
UI, U2 given by (2.9) have branch points at X = 
±[( -ao)]l, the poles of the wavefunction occurring 
for A = =F![(n2 

- 4ao)]t. 
We conclude that the solutions cp( ±X, k, z) of (2.1) 

can be continued in X for all z within the domain of 
holomorphy of V(z) , provided that Iz2V(z) I is 
bounded in the circle of convergence of (2.7). 
Within this region, the wavefunction may be 
represented by the series (2.8) such that: 

(i) when z2V(z) ~ 0 as z ~ 0, cp(±A, k, z) is 
analytic for all finite X, k except for simple poles 
at X = =Fin, n = 1, 2, .... 

(ii) when lV(z) ~ ao as z ~ 0, cp(±X, k, z) is 
analytic for all finite X, k except for branch points at 
X= ±[ -ao]l and simple poles at A= =F![(n2-4ao)]'. 
If V(z) is independent of k, so are these branch 
points and poles. 

Consider next the class of potentials for which 

lim z"laV(z) = constant, (2.13) 
.-0 

where pjq is a rational number, p ~ 2q. Substitute 

~~a, 
0 

0 fo(u + 1) -at 

z = x a in (2.1) to give 

x21/t"(x) + (1 - q)x1/t'(x) - (X2 
- !)q21/t(X) 

+ k2q2x2°1/t(X) - q2X2·V(X·)1/t(x) = 0, (2.14) 

and let the expansion of V(z) for small Ixl take the 
form 

a> 

x2 0V(XO) = L: b",x"+za-,,. (2.15) 
",-0 

Note that bo ~ 0 implies p = 2q. The point x = 0 
is now a regular singular point of (2.14) and a power­
series solution in x may be written as before. The 
indicial equation in this case has the roots 

UI, Uz = q[t ± (X2 + bo)3]. (2.16) 

As one would expect, the branch points at X = 
=F( -bo)f are independent of q and arise in exactly 
the same way as in (ii) above. The recurrence rela­
tions for this case indicate that the coefficients in 
the power series have simple poles when U = !(q-n); 
as in (2.16), these lead to simple poles in the function 
cp(±A, k, z) at A = =F!Cn2 jq2 - 4bo)t. The poles 
of cp( +A, k, z) lie to the left of the line Re X = 0, 
and those of cp( - A, k, z) to the right unless bo is 
positive. In this case the branch cut can be taken 
along the imaginary axis, and for bo > !l, one or 
more of the poles lies on the cut. 

Let us consider how the coefficients in the series 
for 1/t(x) depend on p and q. Substituting the ex­
pansion 

'" 
1/t(x) = L: dnxHfI 

n-O 

into Eq. (2.14), we obtain 

x· I: (u + n)(u + n - 1) + q2ea/a 

+ (1 - q)(u + n) - (A2 
- t)q2 

(2.17) 
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The first nonvanishing coefficient d,. after do is 
d2q _ p (p < 2q). When q is increased relative to p, 
the number of vanishing coefficients increases 
and the poles corresponding to them at A = 
=rHn21q2 - 4bo)i therefore disappear. This is per­
haps contrary to a possible expectation that they 
might have moved in towards the origin. This van­
ishing of certain poles is analogous to the fact that for 
p = 2q, if V(z) is an even function of z, then all the 
odd coefficients in the wavefunction vanish and their 
corresponding poles disappear. 

The preceding paragraphs were concerned solely 
with the case in which the origin is a regular singular 
point of (2.1). By allowing "singular" potentials, 
i.e. V(z) more singular than 1/z2 at the origin, the 
differential equation will have two irregular points 
and the wavefunction cp(A, k, z) has an essential 
singularity at this point. A systematic classification 
of such solutions has not been given except for the 
case of normal or subnormal solutions (3). Here the 
wavefunction assumes the form 

cp(A, k, z) = U(A, k, z) exp [Q(A, k, z)], (2.18) 

where U(A, k, z) is a regular integral of the form (2.8) 
and Q(A, k, z) a polynomial in liz. The subnormal 
case requires that z occur raised to some rational 
power in Q. 

Substituting (2.18) into (2.1) gives a linear equa­
tion for U(A, k, z): 

u" + 2Q'u' + [~~" + Q,2 + e 
- (A2 

- t)/l - Vs(z) - VR(z)]u = 0, (2.19) 

where V(z) = Vs(z) + V R(Z), Vs(z) being the 
singular part. The choice of Q(A, k, z) is dictated 
by the requirement that (2.19) should have at least 
one regular integral near z = O. Giving U a series 
development (2.8) we have 

'" L cnzHn[(O" + n)(O" + n - 1) 
n=O 

+ 2(0" + n)zQ' + Z2(Q" + Q'z 

+ k2 
- V, - V R - A 2 + m = O. (2.20) 

The indicial equation for 0" is found from the coeffi­
cients of the dominant terms for small z when n = 0, 
hence Q must be so chosen that these terms are not 
independent of 0". In the above equation, a necessary 
condition for this is that V(z) should be at least as 
singular as liz'. We shall also take the leading term 
in V(z) to be an even power. For 1/z3 or any odd 
power, a change of variable leads to a subnormal 
integral and gives the case considered. If Q is of 

degree s, the leading s terms in Q,2 - Vs(z) must 
vanish by choice of the coefficients in Q. The indicial 
equation will then be taken from the remaining 
coefficients of 

20"zQ' + i(Q" + Q,2 - VB), (2.21) 

which is a linear relation for 0", independent of A. 
The coefficients en determined by appropriate re­
currence relations must terminate, a condition which 
requires l to be able to take on integer values. By 
Poincare's theorem, U(A, k, z) will be an entire func­
tion of A, since the boundary condition at the origin 
no longer involves A. It then follows that (2.18) 
will be an entire function in the product of the 
A X k planes for all z lying in the region of con­
vergence of the series for u, excluding the origin. 

If the coefficient of the leading term in Vs(z) is g, 
then for small z, cP ,....., z~ exp [± (g) t I ZS]. For a re­
pulsive potential the negative root must be chosen, 
while for the attractive case we take the positive 
root. The origin then becomes a sink, leading to a 
capture probability in addition to the usual scatter­
ing. Further, in (2.11) we have seen that the wave­
function was continuous in the potential. Generally 
the wavefunction will not be analytic in the leading 
term of the potential for small z, the origin being a 
singular point. The reason is that this coupling con­
stant determines the character of singUlarity in the 
solution at the origin, and there is no way of giving 
a continuous classification of these. Lastly, from 
(2.20), U will be a function of A2 only; hence, in (2.18), 
cP is symmetric in A. This property is very useful since 
cf> is also an entire function of A. With reservations 
concerning the cut, this is also true in (2.8) when 
ao ~ O. As we shall see, this symmetry has interest­
ing consequences for the distribution of Regge poles 
in the A plane. The particular case of the 1/z4 po­
tential has been studied by Wannier,4.5 and in less 
detail by Predazzi and Regge.6 

3. PROPERTmS OF THE JOST FUNCTIONS 
AND S MATRIX 

Let us first consider the case z2 V(z) ~ 0 as z ~ O. 
The wavefunctions here have poles only in the finite 
A plane. These are shown explicitly by writing 
cp(±A, k, z) in the form 

cp(±A, k, z) = CPo(±A, k, z) 

+ r(l ± 2A)e(±A, k, z), (3.1) 

where e(±A, k, z) is an entire function of A (Appendix 
1). The Jost functions are 
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f(±A, ±k) W[f(A, ±k, z), ¢(±A, k, z)] 

W[f(A, ±k, z), ¢o(±A, k, z)] 

+ r(1 ± 2A)W[f(A, ±k, z), 

X O(±A, k, z)]. (3.2) 

The first Wronskian has only the poles of r(I ± A), 
while the second is an entire function of A. Therefore, 
for some z in the circle of convergence of (2.8), we 
may evaluate these expressions with the result that 
the J ost functions are analytic in the product plane 
{k I ± 1m k < 0) X {A I A ¢ 00 and not a pole 
of r(I ± 2A»). The imaginary axis in the k plane 
contains the usual kinematic and dynamic cuts of 
f(A, ±k, z). 

The S matrix, defined by 

SeA, k) = exp [2i B(A, k)] 

= f(A, k)lf(A, -k) exp [i'/l'(A - !)], (3.3) 

is a meromorphic function of A [in general for finite 
k regular at the poles of (3.2)] with the usual cuts 
in k. The Regge poles lie on the analytic surface 
in the A X k space given by the zeros of f(A, -k), 
defining some transcendental relation between A 
and k, which we shall call the Regge surface. Actually 
the paths of these poles in the A plane are of principal 
interest when e is real. 

The S matrix possesses certain discrete symmetries 
valid for any k; however the method used to obtain 
them does not allow us to be sure that the same 
symmetries hold without modification for points 
on the Regge surface. From the conjunct identity 
between the solutions of (2.1), 

f(A, -k)f(-A, k) - f(A, k)f(-A, -k) = 4ikA, (3.4) 

we can write the following relation between SeA, k) 
and S( -A, k): 

e-iW~S(A, k) - eiW~S(_A, k) 

-4kA/f(A, -k)f(-A, -k), (3.5) 

and we obtain 

SeA, k) = S( -A, k) 

A = ±n, 

SeA, k) = -S(-A, k) 

n = 0,1,2, "', 

A = ! ± n. 
(3.6) 

When V(z) has the behavior (2.13) with bo ¢ 0, 
these relations must be replaced by 

f(A, -k)f(-A, k) - f(A, k)f(-A, -k) 

= 4ik(A2 + bo)!, (3.7) 

c, FIG. 1. X plane, bo > O. Cl 

goes from X to - X on the same 
sheet; C. goes from X to -X on 
the second sheet. Along Cit 
(X' + bo)' ~ -(I X 12 + bo)', 
and along C., (X' + bo)i -+ 
(X' + bo)'. 

the symmetries being 

SeA, k) 

SeA, k) 

S(-A, k) for A = 0, 

S(-A, k) exp [±i'/l'(A2jq2 - 4bo)t], 

A = 1,2, .... 

(3.8) 

On the other hand, these symmetries also indicate, 
for physical values of A, which terms are present 
in the odd part of the expansion for the potential. 

When z2 V(z) -t ao at the origin, the S matrix is 
a meromorphic function of the angular momentum 
on a two-sheeted Riemann surface, the sheets hinged 
along a cut running in the finite A plane between the 
two branch points A = ±iaoi. By examining (2.9) 
along the two paths shown in Fig. 1, we see that 
the reflection symmetry A ~ - A mentioned in 
Sec. 2 holds, provided the reflection is taken through 
the cut onto the other sheet. This property indicates 
directly how the Regge poles are distributed on the 
Riemann surface. 

Finally, for the singular potentials under the 
restriction (2.18), the f(±A, ±k) are entire functions 
of A with complete symmetry under A to - A. Thus 
S(±A, k) is also meromorphic in A with cuts in k 
as before. Further SeA, k)e-21(i~ = S( -A, k) for 
all A and k, In Sec. 5, a further discussion of this 
case is given for Wannier's example. 

The distribution of poles in the two halves of the 
A plane for a fixed k on the physical boundary can 
be readily obtained for the three cases. For the 
regular potential without the I/z2 term, Regge1 has 
shown that, for k in the 8 + if limit of the physical 
sheet, the poles for Re A > 0 lie in a bounded region 
of the upper half-plane. Consequently, there can 
only be a finite number in this region; any point of 
accumulation must occur at infinity in the left 
half-plane. When the energy lies below threshold, 
the poles are real, clustering at infinity along the 
negative real axis. Including the ao term does not 
change the situation for Re A > O. Regge's proof 
extends trivially; the integrability of the wave­
function at the origin follows from (2.9), and the 
Jost relation 
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4>(±A, k, z) = [teA, -k)f(A, k, z) 

- f(A, k)f(A, -k, z)](2ik)-1 (3.9) 

gives the continuation of (2.8) from its circle of 
convergence to positive real values of z. The pos­
sibility that the poles might cluster at the branch 
points A = ±iao! from Re A < 0, is readily dis­
missed by taking the limit A ~ ±iao' in (3.7), 
and using the properties of the zeroes of f( -A, -k) 
for k2 real which follow from the continuity equation. 
There are then a finite number of poles in the right 
half-plane, but an infinite number to the left as 
before. Upon crossing to the next sheet, this distri­
bution is reversed. 

In the case of a singular potential, on the physical 
sheet the poles lie entirely in the first and third 
quadrants of the A plane, symmetrically placed with 
respect to the origin. Unless teA, -k) is a pure ex­
ponential or is polynomial bounded in A, there will 
be an infinite number extending to infinity in some 
complex direction. The motion of these poles at 
large values of k will determine the fate of the 
Mandelstam representation for this class of potential. 

4. PROPERTmS OF THE REGGE TRAJECTORY 

Consider now the task of establishing analytic 
properties of the position of the Regge pole as a 
function of energy, together with the general shape 
of the trajectory. From the conjunct identity in the 
case ao = 0, the resonance poles and zeroes of 
t( -A, k) must satisfy an implicit equation 

'(k) = . f(A, k)f( -A, -k) = . yeA, k). 
1\ '/, 4k '/,4k (4.1) 

Any general properties obtained from this relation 
will necessarily hold on the Regge trajectory though 
are not unique to it. The function yeA, k), a given 
function of energy at the position of the resonance 
pole, satisfies 

yeA, k) = g( -A, -k), 

yeA, -k) = Y(-A, k), (4,2) 

yeA, k) = g*(A*, -k*). 

From these, A(k) and A( -k), are both consistent 
with (4.1); while unitarity teA, k) = f*(A*, -k*) 
implies that if A(k) is a pole, so is A*( -k*). 

The right-hand side of (4.1) is analytic in k except 
for the cuts along the imaginary axis. Applying the 
implicit function theorems,1I to the zeroes of f(A, -k) 
with af(A, -k)/aA ¥- 0, one sees immediately that 
A(k) has a unique single-valued continuation in the 
k plane. The Regge pole as a function of 8 has the 

usual two-sheeted behavior near threshold, but the 
left-hand cut starting at 8 = 0 and running along 
the negative real axis lies in the unphysical sheet. 
The portion of this cut from -l/4 < 8 < 0 has 
been shown by Bottino et al. l to be purely kinematic. 
From Watsonll and Appendix B, 

f(A, ke-21ri
) = f(A, k) - af(A, -k), 

fe-A, _ke-2ri
) = (1 + a2)f( -A, -k) 

- af(-A, k) 

(4.3) 

(where a = 2i cos 1I'A), wherever these functions are 
analytic. Then 

A(ke-2ri
) = (i/4k)[(1 + a2)f(A, k)f( -A, -k) 

- af(A, k)f( -A, k)] (4.4) 

= (1 + a2)A(k) 

- (ia/4k)f(A, k)f( -A, k). 

For the zeroes of f( -A, k), 

A(ke-2
"

i
) = (1 + a~A(k) 

- [ia(l + a~/4k]f(A, -k)f( -A, -k). (4.5) 

The discontinuity across this portion of the un­
physical cut will then be given by 

disc A(k) = aA(k)[a - ei"O.+tlS(_A, k)J, (4.6) 

vanishing at physical values of A. 
The behavior of A(k) for large \k\ follows from (4.1) 

together with the result of Appendix A, viz. that 
the Born approximation dominates at high energies 
for all A except the negative half-odd integers. Let 
us assume that the resonance poles do not tend to 
these exceptional points at large energies. We can 
then apply the Born approximation by making an 
asymptotic expansion of (4.1) in inverse powers of 
Ikl, that is 

!~ A(k) = t;; (A, k)fo(-A, -k) 

X [1 + OCkll~ Ikl)]. (4,7) 

the error term going uniformly to zero off the cuts. 
From this we can obtain a consistency relation 
which must be satisfied in the limit k ~ ex). Substi­
tute (A.S) from appendix A into (4.7) and use the 
relation r(A)r(1 - A) = 1I'/sin 1I'A; this gives 

exp 2mA = O(l/Iklln Ik\) as k ~ ex). (4.8) 

11 G. N. Watson, Bessel Functiona (Cambridge University 
Press, Cambridge, England, 1922). 
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This will be true only if A ~ Al + i aJ as k ~ aJ I 

where for nonsingular potentials Regge1 has shown 
that Al must be less than zero. This is the consistency 
condition for the Regge trajectory which must be 
satisfied if A does not tend to the poles of the wave­
function cpo To establish that in fact A ~ - (n + i), 
it is therefore necessary to prove that Im A is bounded 
for large k. When e ~ - aJ on the physical sheet, 
the absence of a left-hand cut for the Regge tra­
jectory requires that Im A = O. However we have 
not been able to establish this for the physical region, 
though it has been verified numerically for Yukawa 
potentials. to For potentials that give rise to a 
SchrOdinger equation of singular type, the limit 
A ~ Al + i aJ can actually occur with Al > O. 

In Fig. 2, a typical bounded Regge trajectory is 
drawn for values of 8 on the real axis. The nth pole 
for ao = 0 starts at -!(2n - 1) for large negative 8, 

becoming complex at threshold and bending back 
to this value via the upper half-plane as 8 takes the 
+ie limit along the physical cut. The turning points 
in the trajectory are a manifestation of the com­
plexity of the potential. If the poles are isolated, 
the trajectory will remain in the upper half-plane. 
This places a severe restriction on the scattering 
amplitude, which may not be true when production 
thresholds are present. For ao = 0, we may then 
write 

A (8) = - .!(2n - 1) + .! 1'" ds' ~m A,,(S') (4.9) 
" 2 'Tr' 0 (s - s) 

for the bounded trajectory. 
Lastly, let us turn to the case when the III 

term is present. The conjunct identity gives the 
consistency condition in the form 

(A2(k) + ao)! = (i/4k)f(A, k)f(-A, -k), (4.10) 

the right-hand side being a meromorphic function 
of u(k) = (A2(k) + ao)! in accordance with section 
2(ii). By our preceding arguments, u(k) has ana­
lyticity in k except for the imaginary axis, the lower 
part being relevant to the resonance pole. Thus A(k) 
can have additional branch points occurring at con­
jugate points for an attractive potential at short 

FIG. 2. A plane ao = O. 
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\ FIG. 3. Regge 

..,. ., trajectories in the A 
-4==lO:;::==z::..+-----.:::.-.,.;: ... !...:-:....:-~-A~-=::...: plane (ao > 0). 
-{(~-;If-j'.t. I 

range. In general these will be isolated square-root 
branch points at complex values of 8. 

The high-energy limit also differs in this case, as 
the Born-approximation argument breaks down at 
A = _!(n2 

- 4ao)'. The Regge poles have been 
shifted by the l/z2 term-some becoming complex 
for an attractive potential-and lie in the cut on the 
imaginary axis. In the next section we shall see how 
these poles move further through the cut into the 
right half-plane as the potential becomes singular. 
On the other hand, as the potential becomes less 
singular at the origin, these poles representing the 
high-energy limit, move further to the left. Finally, 
when V(z) has only even terms, at large energy 
there will be no resonance poles remaining in the 
finite plane. Instead they move to infinity, possibly 
in a direction parallel to the negative real axis. 

An example of a trajectory when the cut is present 
is given by the potential V(z) = gdz2 

- gdzj 
gl, g2 > OJ for which 

S(A k) = r[(A
2 + g2)' + ! - ig1/2k] (4.11) 

, r[(A2 + g2)t + ! + ig1/2k] , 

with the position of the poles 

A,,(8) = ± [(igd2k - n + !)2 - g2J i 

n = 1,2, '" (4.12) 

The path is shown in Fig. 3, where - co < 8 + 
ie < aJ, the points (AI, A2) = (-E, e); (9, Nao + E); 
(E, e) j correspond, respectively, to 

(4.13) 

The solid curve is for gz < t, when all the poles 
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start off at real values. For g2 > t, a finite number 
start at points on the imaginary axis; these are 
indicated by the dotted path. In both cases none of 
the poles go through the cut onto the next sheet 
for real values of the energy. 

5. THE l/z4 POTENTIAL 

The 1jl potential is a ready example for examin­
ing the behavior of the Regge poles in the singular 
case. This potential, which occurs in the polariza­
tion of gas molecules by a stream of charged par­
ticles, was first examined in this connection by Vogt 
and Wannier.4 The Mathieu equation which arises 
in the course of this work has been studied in detail 
by Wannier,5 with specific application to the prob­
lem of polarization. As we shall make free use of 
this work with reference to the Mandelstam repre­
sentation, we refer the reader to reference 5 and to 
the appendix of reference 4. 

For the case of scattering, the repulsive potential 
is of greater interest in that it approximates to the 
"hard core" effect at small distances, which so far 
seems to be characteristic of potentials obtained 
from relativistic theories. Consider then a potential 

V(z) = lN, (5.1) 

where g is taken real and positive. In (2.1) make 
the following set of substitutions: 

x = In (zjzo) ; z~ = igjk, (5.2) 

reducing to Mathieu's equation for cJ>, 

cJ>"(x) - (>.2 - 2igk cosh 2x)cJ>(x) = O. (5.3) 

The solutions of this equation and the Jost-type of 
connection formulas between them will be found in 
reference 5. For small z, (2.1) indicates l/;(z) rv 

exp [±gjz], while at large distances from the origin, 
l/;(z) rv exp [(±ikz)jz]. The solution of (5.3) satisfy­
ing the hard-core boundary condition in Wannier's 
notation is 

where in applying these formulas, analytic continua­
tion is carried out in k from the positive imaginary 
axis. By making use of the connection formulas of 
reference 5 and following reference 4, one easily 
finds the following expression for the scattering 
amplitUde: 

f(k, 0) 
i 

=-
2k 

x i: (-I)Zpz(cos O)(2l + 1) exp (cf». 
/-0 i exp (cf» cos 7r{3 - cos 7rl' 

(5.5) 

The parameter l' may be eliminated by using 
exp (cf» = i sin 7r/' j sin 7r{3 with the result that the 
partial wave amplitude assumes the form 

a(>., 8) 

exp (i7r>') 
= 2[i cos 7r{3 - (exp (-2cf» + sin2 7r(3)!j' 

(5.6) 

The analytic surface in the X X k space leading to 
the Regge poles is given by solutions to the trans­
cendental equation 

cf>(>', k) = (m + !)7ri 

m = ... , -1,0,1, .... (5.7) 

Wannier's approximation to the phase function 
cf> = cf>o may be written 

cf>o(>', k) = 2(>.2 - 2igk) 

t (1 - l)2 dt 
X 10 (1 + t2)2[X2t2 + igk(1 + t4)]t 

_ 7r(>.2 - 2ikg) (3 1. • >.2 - 2ikg) 
- 2(>.2 + 2ikg)! F 2, 2,2, X2 + 2ikg . (5.8) 

The Floquet parameter (3 is given implicitly12 

by the roots of 

(5.9a) 

where d(O) is the Hill determinant for Mathieu's 
equation, 

1 

d(O) 
ikg 

22 _ >.2 

o 

_ ikfL_ 
42_ >.2 

1 

-igk 
~ 

0 ... 

ikg 
22 _ >.2 

1 

0 ... 

-ikg 
~O 

(5.10a) 

(5.9a) indicates that cos 7r{3 is an entire function of >., 
with exponential behavior at infinity. The proof 
of the absolute convergence of d(O) for finite values 
of k can readily be extended to uniform convergence. 
The alternative form of (5.9a) gives the exponential 
behavior in k, 

cos 7r{3 = 1 - 2 .:l(O) sin2 p( -ikg)!, (5.9b) 
----

12 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, Cambridge, England, 
1927), Chap. 19. 
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where 

_ • P (4n2 _ X2)Z XZ 
A(O) = hm II (4 Z + 'k ? X A(O) =-:-k . (5. lOb) 

p~a) n-l n z g z g 

Consider now a(X, 8) for some fixed physical value 
of X and examine the behavior for large values of 
k on the physical sheet. From (5.8), 

<I>o "" w(lkl g)i exp [ti(arg k - h)], 

where w is a positive number. (5.lOb) indicates that 
Ll(O) is bounded for large k with leading term unity. 
cos 7r/3 will be bounded along arg k = h, but in­
creases exponentially in any other direction in the 
physical sheet. Consequently, a(X, 8) will tend to 
zero in any direction except along the negative real 
axis. A dispersion relation for this function will 
then require one subtraction in the 8 variable. For 
a complex potential, i.e., g complex, arg g can be 
chosen so that an unsubtracted dispersion relation 
holds on the physical sheet. Whether or not a 
Mandelstam representation is valid for the total 
amplitude 1(8, (J) will depend upon the behavior of 
the poles (5.7) as functions of the energy. We 
examine this next. 

The asymptotic behavior of the denominator in 
(5.6) for large Ixi indicates that the counterpart of 
the Jost function t(X, -k) is not polynomial bounded 
nor is it a pure exponential. There will then be an 
infinite number of poles in each quadrant of the 
X plane. For the physical sheet, the first and third 
quadrants are relevant. The presence of an infinite 
number of poles in the right half-plane is the compli­
cation which casts doubt on the validity of the 
Mandelstam representation. In appendix C we dis­
cuss (5.7) in some detail. The result of this 
work shows that the poles all lie outside the circle 
IXl z = 2g Ikl. When k = ikz, k2 > 0, the poles come 
in from infinity along the imaginary axis as k2 is 
decreased through positive values to zero. The 
behavior at k = 0 is highly nonanalytic, the poles 
tending to zero roughly as k2 ~ 0 as IXI 2 

,-...; 4gk2 
exp [o(Ilk2)]' (This is an essential singularity.) 

For physical values of k, the poles are all confined, 
say, to the lower half of the first quadrant. For 
finite energy they may not cross the line arg A. = 7r I 4, 
but approach this line asymptotically as k tends 
to infinity; 

X~ ~ 2igk[I ± (2m + I)(gk)-i]. 

The implication of this behavior is that for large 

energies, at least the real part of the pole becomes 
unbounded. In terms of Regge's representation for 
the scattering amplitude, this would imply an in­
finite number of subtractions in cos (J; hence we 
would not be able to write a dispersion relation for 
the amplitude directly in momentum transfer. How­
ever, even though the Mandelstam representation 
does not hold, the representation in terms of inte­
grals and an infinite sum over poles in the X plane 
is valid. In this particular case, the scattering ampli­
tude reduces to an infinite sum, the integral along 
the line Re X = 0 vanishing by virtue of the sym­
metry of the S matrix with respect to the origin. 
For a discussion of the evaluation of the cross 
section for this system by means of this method, 
we refer the reader to reference 4. 

6. RELATIVISTIC POTENTIAL SCATTERING 

The equation for the radial part l/t(z)lz of the 
wavefunction for relativistic potential scattering is 

ll/t"(z) - (X2 
- 1/4) l/t(z) 

+ i(E2 
- m2 + V 2 

- 2EV)l/t(z) = 0, (6.1) 

where E2 = e + m2
, c = h = 1. The condition 

for z=O to be a regular singular point is that V(z) 
shall be no more singular than liz at the origin. For 

00 

zV(z) = L amzm
, (6.2) 

m=O 

from our previous discussion, there will be branch 
points for the wavefunctions cp( ±X, k, z) at X = ±ao, 

and simple poles at X = ±!Cn2 + 4a~)! n = 1, 
2, .... These points also give the high-energy limits. 
We cannot, however, get rid of a finite number of 
these poles by dropping odd terms in (6.2) as in 
Sec. 2. Only when the odd terms in V 2 

- 2EV 
vanish will this happen. This is in general not so at 
finite energy. Of course when V is even, then cp 
is entire in X. 

For a potential more singular than liz, the dis­
cussion on singUlar potentials now applies. The 
nature of the distribution of poles and the various 
asymptotic limits follows as in Sec. 5. In passing, 
let us mention the particular case of V(z) = llz2. 
Equation (6.1) becomes (5.3) where k2 = E2 - m2 

and X2 is replaced by X2 + 2lE. The solution for 
the poles proceeds as before only now the angle at 
which the poles tend to infinity at large energy 
is -h. Furthermore, the appearance of the energy 
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FIG. 4. The real 
projection of the 
Jlegge curve for 
examples of the 

---------=~~--------~s~~ neutron-proton 
-I system, C I in the 

triplet state, C 2 

singlet state. 

in the order of the equation introduces an energy­
dependent branch point in the A plane. 

For a further, more detailed description of this 
case, we refer to recent papers by Oehme and 
Singh.12

•
13 

7. REAL SECTIONS OF REGGE SURFACES 

In this section we discuss some features of Regge 
surfaces in potential theory with a view to extending 
this study in a subsequent paper13 to field theory. 
First we consider potentials for which explicit 
solutions exist. The Coulomb potential has been 
analyzed both for the nonrelativistic and the 
relativistic Schrodinger equation by Singh, I' and 
for the latter also by Oehme.a Nonrelativistic 
Coulomb scattering gives Regge surfaces 

1 + n + 1 = ±ie2j2k n = 0,1,2, "', (7.1) 

where a positive sign corresponds to an attractive 
potential. In the energy variable we have 

E(n, l) = -e'j4(l + n + 1)2. (7.2) 

The algebraic curves for real (E, l) are now the 
same for attractive and repulsive potentials, how­
ever they refer to singularities of the partial wave 
amplitude on different Riemann sheets in E. The 
branch that intersects positive integers in l is on 
the physical sheet for an attractive potential, but 
on the unphysical sheet for the repulsive case. For 
the latter, the poles at the integers correspond to 

-------- \-----'i-c-L''-------

-I 

FIG. 5. The real 
projection of a 
Regge curve for a 
system having a 
resonance. 

11 J. Challifour and R. J. Eden, Regge Surfaces and 
Singularities in a Relativistic Theory, (Cambridge University 
Press, Cambridge, England, preprint, 1962). 

14 V. Singh: UCRL, 9972, December 1961. 
U R. Oehme, University of Chicago preprint (1962). 

virtual states (sometimes called anti-bound states). 
The long-range character of this potential leads to 
bound states (or virtual states) for all l. The curve 
(7.2) touches the branch point at E = 0 asymp­
totically and crosses through from physical to un­
physical sheet at infinity in l. 

For a potential of shorter range, as between 
neutron and proton, the corresponding curve will 
meet the line E = 0 between l = 0 and l = 1 
in the triplet states, and between l = -1 and l = 0 
in the singlet state. In the former case, the part 
of the curve at l = 0 is on the physical sheet and 
in the latter, it is on the unphysical sheet. The real 
projections of the curves are illustrated in Fig. 4, 
where the negative integers have been taken as 
asymptotic values. 

A similar real projection of the Regge curve can 
be deduced for a square-well potential by extra­
polation from the work of Nussensweig,16 (though, 
as is well known, the continuation to complex l 
is ambiguous for a square-well potential). He solves 
for the poles of the S matrix at l = 0, and l = 1; 
one can see from his solution how the tangent point 
on E = 0 moves to larger values of l as the strength 
of the interaction increases. 

We do not know of any soluble potentials leading 
to resonances, but if there is a resonance, the 
character of the real projection of the Regge curve 
must be of the form shown in Fig. 5. Then by follow­
ing the intersection E = El (real) with the surface, 
we obtain the trajectory for the pole as El increases; 
l = l(EI), E = El real. This trajectory must come 
near to the curve E = E(ll), l = II real, near the 
resonance as shown by the broken lines in Fig. 5. 
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APPENDIX A 

In this appendix, it is shown that for the class 
of nonsingular potentials considered in the text, 
the asymptotic behavior of the wavefunctions and 
Jost functions for large values of the energy is given 
by the Born approximation for all finite A---1:lXCept, 

16 H. M. Nussenzweig, Nucl. Phys. 11,499 (1959). 
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possibly, for a discrete set of points. By using the 
Phragmen-Linde16f theorem on the remainder 
terms, this asymptotic development can be extended 
to complex values of the energy. 

For the wavefunctions r!>(±A, k, z), consider the 
case ao = O. By extracting the Born terms from the 
coefficients c,,(±O", k), we will show that r!>o(±A, k, z) 
dominates the high-energy behavior and r!> '""" r!>o 
uniformly for all finite A, except for the poles of 
ra ± A) for z in the domain of convergence of the 
series. 

Write (2.11) as 

F,,(O", k) = F~(O", k) + F~'(O", k) , (AI) 

where 0" = 0"1 or 0"2, and 

o 

F~(O", k) 
o 

t(O" + n - 1) 

o 

o 

o 
o e 

t(O" + n - 2) 0 

o 

o k2 

o t(O" + 1) 0 
(A2) 

The remainder is easily shown to be 

" 
F~'(O", k) = L F"_;(O", k)G;(O", k), (A3) 

j-1 

with a determinantal expression for G;(O", k) which 
is of one degree lower in ethan F j; 

o 

G;(O", k) = 

t(O" + n - 1) 

o t(O" + n - 2) 0 

o o (A4) 

o 

Substituting F~(O", k) for F"(O", k) in (2.10) and (2.8), 
we obtain 

r!>o(±A, k, z) = z=~+ir(l ± 2A) 

X.t (-ztF'(O", k) . (A5) 
"-on! r(l + n ± 2A) 

Note that F~(O", k) vanished for odd values of n, 
and this is just the Bessel series 

r!>o(±A, k, z) = 2~~r(1 ± A)k .. ~ztJ.~(kz). 

By expanding the determinants, we find that for 
large k2

, 

F"(O", k) = F~(O", k)[l + F~'(O", k)/F~(O", k)] 

r-.J F~(O", k)[l + 0(1/lkI2)]. 

Each term in the series for r!>o(±A, k, z) dominates 
(2.8) term by term, and the original series was 
uniformly convergent. Thus the asymptotic de­
velopment will be true for all A with the exception 
of the values given above. These are just the poles 
of the remainder series. This is the result stated. 

The restriction on ao can be removed, the Born 
approximation constituting the leading term in an 
asymptotic expansion for large k. However the term 
-ao/l must be included in the centrifugal terms 
in calculating r!>o. The points at which the asymptotic 

o t(O" + n - j + 1) -al 

development may break down in the A plane are 
the counterpart of the half-odd integers as de­
scribed in Sec. 2. 

The case of the Jost scattering solutions is readily 
dealt with by making use of the following bounds 
in (2.6): 

I Jx(kz) I < K (Ik" ~)~'~ +i exp [lIm kl z 
- (1 + k z) , 

- A2 arg k], A = Al + iA2, Al > 0, 

IH~2)(kz) I ~ K(2/rr Ikl Z){ 1 tki!1 z ],'-i 
X exp [(lm k)z - !1I"A2 + 11" IA211 (A6) 

(and similarly for the other Hankel function), 
for 0 < z < 00, the last holding for the lower half­
plane. These are readily obtained from integral 
representations for the Bessel functions involved, 
and constitute the appropriate form for complex 
values of the bounds given by Levinson.17 These 
are less generous at the high-energy limit than those 
used by Bottino et al. 1 and give the usual l/lkl 
bound on the kernel of (2.6); 

17 N. Levinson, Kg!. Danske Videnskab. SeIskab., Math­
fys. Medd. 25, No.9 (1949). 



                                                                                                                                    

370 J. CHALLIFOUR AND R. J. EDEN 

I ;7r (z~)! IJ x(k~)H~(kz) - J ,(kz)H~(k~) 1 I 

< _ K ( Ikl ~ )"+!(l + Ikl Z)"-! 
- exp ( X2 arg k) Ikl 1 + Ikl ~ -Ikl Z 

X exp {11m kl ~ + (1m k)z - !7rX2 + 7r IX2 11, (A7) 

for 1m k < 0, ~ > z. A similar bound results for 
1m k > ° by making use of the corresponding bound 
for Hil

); for the details of this, see reference 1. 
The proof of the dominance of the Born term in 

(2.6) now goes for Re A > ° as in the usual case,18 
and is extended to Re A < ° by the symmetry 
f(X, ±k, z) = f(-X, ±k, z). The result of these 
operations is that f(X, ±k, z) '" foCX, ±k, z) uni­
formly for large Ikllying in the respective domains 
of the k plane, 1m k < !JL for all finite X, and ° < 
Zo < z < IX) , where 

J.~ V(z) exp (JLz) dz 

is critically convergent. By making asymptotic ex­
pansions of the wavefunctions in (3.2), we have: 

In the limit Ikl---t 00 for 1m k S 0, f(X, k) '" foCX, k) 
uniformly for finite X except at X = -!n when 
ao = 0, or X = _!(n2 

- 4ao)! when ao ~ 0. For 
ao = 0, 

/O(X, lc) = [-i2'r(X + 1)/k'](2k/7r)i 

X exp [- i7r!(X + !) J. (A8) 

APPENDIX B 

Here we just wish to add a note on the extension 
of the rule for the transformation of the Jost func­
tions on going around the branch point at k = 0, 
to all values of A in the plane except for the poles 
of f( ±X, ±k). Since cf> is an entire function of e , 
the rule follows once established for f(X, ±k, z). 

The bounds in Appendix A can be used to extend 
the proof of Bottino et al. 1 of the convergence of 
the Born series to all finite values of X. Analytic 
continuation in k extends each term in 

a> 

f(X, ±k, z) = L fn(X, ±k, z) (B1) 
n=O 

to the domain of Sec. 2. From Watson/1 

H~!)(kwemWi)H~2) (lczemwi) _ Hi!) (lczem.ri)Hi2)(lcwemr i) 

= H~!)(kw)H~2)(lcz) - H~!)(lcz)H(2)(lcw); (B2) 

hence by induction on n, the law of transformation 
of fo extends to each fn, and then, by convergence of 
the resulting series, to the sum f. We are then justi-

18 R. G. Newton, J. of Math. Phys. 1,319 (1960). 

fied in using (5.3) for other than real positive values 
of A. 

APPENDIX C 

The general restrictions imposed upon the loca­
tion of the resonance poles for a real potential may 
be deduced from the continuity equation as used 
by Regge. l Taking the particular case of a singular 
potential with a wavefunction satisfying the hard­
core boundary condition, we may write the following 
relation valid for all X, k on the Regge surface 
with 1m k > 0: 

Re kIm k ia> 11/I(z) 12 dz 

= Re X 1m X J~a> 11/I~Z)12dZ. (C1) 

Allowed regions of the A-k planes for the poles of 
the S matrix are then 

1m k > ° 1m A < O} d 1m X > O} (C2) 
Re k ~ 0' Re X 5 ° ' an Re X ~ ° . 
When k is physical, the contribution depending 
upon the energy becomes the Wronskian of rjJ and rjJ*, 
so that (C1) is replaced by 

k = 2Re X 1m X ia> dz 11/I~Z)r, 
and poles are allowed in k ~ 0, 1m A Re A ~ 0. 
Finally when Re k = 0, 1m k > 0, the poles must 
lie on the lines given by Re X 1m A = 0. 

A more detailed picture of the distribution of 
poles in the A plane can be found by considering the 
possible values of A for which (5.7) may have a 
solution. In Wannier's first approximation this 

. ' equatIOn reads 

F(!, !; 2; z) = (2m + 1)i/[z(X2 + 2iglc)!], (C3) 

where k will be taken real and positive; 

z = (X2 
- 2igk)/(X2 + 2igk) , z = ZI + iz2 • (C4a) 

The positive branch of the square root in (C3) is 
the one relevant for our purposes, and we shall also 
regard m as positive. It will be useful to have a 
picture of the mapping A to z for a given fixed k 
defined by (C4). Setting 

X = IXI exp (irjJ); 2igk/X2 = exp (-20), 

one finds 

z = (sinh 201 - i cos 2cf»/(cosh 201 + sin 2cf». (C4b) 
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This correspondence is shown in Fig. 6, the z plane 
being covered twice. The line eP = t1l" is taken into 
a segment of the real axis -1 < z < 1, while 
cP = - h corresponds to the remainder of the real 
axis. Circles in the A plane, i.e., 61 constant, are 
mapped into circles in the z plane given by 

(ZI - coth 2(1)2 + z; = I/sinh2 281 • (C5) 

Similarly, the lines eP constant become circles with 
center ZI = 0, Z2 = tan 2eP, and radius cos 2eP. The 
imaginary axis Re z = 0, is the map of the circle 
IxI 2 

= 2gk; the inside of this circle for lePl < h 
arises from points in the third quadrant of z, while 
the outside arises from points in the fourth. For lines 
in the wedge 1'11" < cP < 111", the relationship is the 
same only in the upper half of the z plane. 

Our procedure will be to match the signs of real 
and imaginary parts on both sides of (C3), and in 
this way implement the information obtained from 
the continuity equation. The work of Van Vleck1

\) 

shows that the hypergeometric function F(!, !; 2; z) 
has no zero except possibly at infinity. Hence on the 
real axis - (Xl < z < 1, F(!, !; 2; z) is positive. 
Further, the hypergeometric function is real analytic 
in the plane cut along the positive real axis from 
one to infinity. The sign of its real and imaginary 
parts may be obtained by using the representation 

211 (1 - t)! dt 
F(!, !; 2; z) =;; 0 tt(I _ zt)t larg (1 - z) I < 11", 

the branch of (1 - tz)-! determined by requiring 
(1 - tz)-! ~ 1 as z ~ O. Setting 1 - tz = Me i

", 

z = Izl e;~ gives the real and imaginary parts in 
the form 

2 fl (1 - t)t dt 3 
ReF(t!;2;z) =:; 0 tiM-t -COS(2a ), 

(C6) 
2 Jl (1 - t)t dt. 3 

1m F(t !; 2; z) = -;; 0 ttMJ sm (2a ) , 

where tan a = -t Izl sin ,u/l - t Izf cos,u, lal < h. 
For arg k = 0, the mapping (C4) is such that we 
may always take Izl ~ 1 for 0 < eP < !11", so that 
tan a can maintain a uniform sign along the contour 
of integration for a given z. Thus for z within the 
unit circle, sin (3a/2) has one sign; hence 1m F ~ 0 
for 1m z ~ O. Similarly, in the second and third 

19 E. B. Van Vleck, Trans. Am. Math. Soc. 3, 110 (1902). 

FIG. 6. The A-Z correspondence for equation (CA). 

quadrants, cos (!a) is positive definite and Re F > O. 
In the right half-plane all z inside the domain 
Izl ~ 1 with Izl ~ 3i /(lsin ,ul + (3)! cos ,u) have 
Re F > 0, while outside, Re F < O. This region 
cuts the unit circle at,u = 0, ,u = ±h and requires 
Izi ~ 1 Izl ;:: 1. 

Lastly, rewrite the right-hand side of (C3) as 

[(2m + I)/lzl N!Ji exp [-i(,u + !It)], 
with N the modulus of the root, and 

tan l' = (IXf 2 sin2IjJ + 2gk)/(IXI 2 cos 2IjJ) , 0 < l' < 11", 
for the positive branch of the square root. It is now 
straightforward to consider the following cases: 

(i) eP = 111", -1 < z < 1. In (C3) the left-hand 
side is real and positive, while the right-hand side 
is complex. Hence for finite A and k ~ 0, poles may 
not occur anywhere along this line. 

(ii) h < eP < h· Here !11" < l' < 11", and there 
can be no matching of real and imaginary parts. 

(iii) 0 < cP < h. In this case for IXI 2 > 2gk, 0 < 
l' < !11", hence (C3) may have solutions in the range 
o < ,u + 1'12 < !11". 

(iv) eP = 0, Izl = 1. 0 < l' < h,O < !It + ,u < !11". 
The matching of the imaginary parts requires 
-!11" < ,u < 0, which is in the region for Re F < O. 
There are then no solutions along this line. 

Consider now the high-energy limit k ~ (Xl. It 
is seen immediately that IAI cannot remain finite 
for a solution. We can satisfy (C3) asymptotically 
for large k by requiring 

[(2m + I)iJ[(X2 + 2igk)i/(X2 
- 2igk)] ~ l. 

The poles then must lie in the sector 0 < eP < h 
outside the circle IxI2 

= 2gk, tending asymptotically 
to the line X2 = 2gk eiCir

) as k becomes infinite. 
The configuration in the X plane for complex 

values of energy can be obtained from the above by 
rotation through an angle Harg k). 
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Potential Scattering 
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The pot~ntial-sca~tering model.is discussed from the point of view of analyticity properties of 
the scattenng amplitude: DynalUlcal schemes based on the Mandelstam representation and the 
use of Regge poles are reviewed. Consequences for strong interaction physics are also briefly reviewed. 

I. INTRODUCTION 

T HE present paper is primarily a review article 
on recent research concerning potential scatter­

ing. Particular emphasis is placed on Regge's 
theorem and its application to the Mandelstam 
representation. We hope that this paper will be 
useful as an introduction to recent research on 
dynamical calculations in the realm of the strong 
interactions. 

II. POTENTIAL SCATTERING 

1. Limitations 

Potential scattering is concerned with non­
relativistic scattering according to quantum me­
chanics, using the Schrodinger equation. One must 
guard against simply equating quantum mechanics 
with the solution of the Schrodinger equation; 
even in classical mechanics, we must use field theory 
to describe electromagnetic radiation. Quantum field 
theory is a particular formulation of quantum 
mechanics which allows us to deal with systems 
of many particles, taking into account the exclusion 
principle, and it permits the description of particle 
creation and annihilation. 

The general acceptance of the Schrodinger 
equation in atomic physics is based mainly on the 
successful explanation of the complicated atomic 
spectra. In nuclear physics, only the symmetries, 
but not the dynamics contained in the Schrodinger 
equation have led to useful results. This is reflected 
in the complicated form of the nucleon-nucleon 
potential that must be assumed in a phenomeno­
logical approach. 

Quantum mechanics was originally invented to 
deal with bound states, since the calculation of 
binding energies of atoms was important for the 

* N.S.F. Postdoctoral Fellow, now at University of 
Pennsylvania, Philadelphia, Pennsylvania. 

t Fulbright Fellow, on leave of absence from Faculty 
of Sciences at the University of Ankara, Ankara, Turkey. Now 
at University of Colorado, Boulder, Colorado. 

theoretical interpretation of atomic spectra. The 
wavefunctions of the bound states span a Hilbert 
space, that is, a complete linear space with an 
inner product. 

In dealing with scattering states, we have to 
allow wavefunctions which are not normalizable , 
and hence do not belong to the Hilbert space. 
To deal with these states it is customary to enclose 
the system in a large box. This procedure is very 
annoying and leads to incorrect conclusions in 
dispersion theory. Hunziker and Jose have shown 
that it is possible to formulate potential scattering 
in terms of the Banach space of bounded functions, 
which seems very natural. Nevertheless, there is 
no physical principle to decide the issue, so we 
prefer to remain rather vague in the following 
on this point. 

In the following, we consider the collision at 
nonrelativistic energies, in the center-of-mass 
system, of two distinguishable spinless particles, 
interacting via a time-independent, local, spherically 
symmetric potential VCr), depending only on the 
relative separation r = Ixl = IXI - x2 1 of the two 
particles. We set h = 2m = 1, where m is the reduced 
mass of the two particles. The Schrodinger equation 
is 

(72 + k2)y,. = Vy,., 

where 8 = k2 is the kinetic energy of the particles 
at the beginning of the scattering process. 

Boundary conditions are imposed to pick out the 
physically acceptable solutions. Solutions of the 
Schrodinger equation, which are bounded and 
continuous and have positive energy, correspond 
to scattering states, while square-integrable solutions 
for negative energy correspond to bound states. 

Two different complete sets of scattering wave­
functions, the incoming and outgoing solutions are 
used; these require an additional asymptotic bound­
ary condition. The incoming solutions represent the 

1 W. Hunziker, Helv. Phys. Acta 34, 593 (1961). 
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physical state in which a plane wave is incident 
and all possible final states are formed. The outgoing 
states are obtained from the incoming states by 
motion reversal. 

2. The Lippmann-Schwinger Equation 

where 

-,1:,. 
(x I k!:t) ~ eik

•
X + e_ M(k', k), 

,.-tCO r 

The incoming and outgoing states will be denoted Here k' is a vector of length k in the direction x, 
by that is, k' = kx. Using Dirac's notation, we may 

and a plane wave by 

(x ! k) = eik
'
X

• 

The asymptotic boundary conditions that define 
these solutions may be incorporated into their 
dynamical equation by writing the Schrodinger 
equation as an integral equation 

write 

M(k', k) = (-l/41r)(k' IVI kin). 

The interpretation of the scattering amplitude 
M(k', k) is found by recalling that the probability 
current flux in nonrelativistic quantum mechanics is 
given by 

~ 

S = -il/t*Vl/t, 

1 J *iklx-YI The cross section dry/dO is defined as the ratio of the 
(x I k!:t) = e,k.lt - 41r Cfy ix _ yl V(y)(y I k!:t), outgoing current flow to the incoming flux; thus, 

often referred to as the Lippmann-Schwinger 
equation. The Green's function that appears here, 

-iii, • J d3p eiP
'
X 

G.(x) = - e A_ = hm -( )3 k2 2 ., "rlH __ 0+ 211" - p ± tE 

satisfies the equation 

(\,72 + k2)G.(x) = c5(x). 

The equivalence of the integral equation with the 
ordinary Schrodinger equation follows immediately. 

Many theorems in scattering theory, including 
unitarity and analyticity can be deduced from the 
integral equation. 

In proving analyticity, one generally proceeds 
by writing down a formal solution-for example, 
the Fredholm solution-and verifying explicitly the 
mathematical existence (convergence) of the result, 
and then deducing the analytic properties simply 
by inspection. Thus, analyticity is more or less 
a byproduct of existence theorems. This method 
was first introduced in an extremely simple case 
by Poincare. 

From the Lippmann-Schwinger equation, if V is 
real, the motion-reversal theorem to which we 
have referred, follows immediately: 

(x I kin) = (X I - kout)* . 

3. Scattering Amplitude 

From the Lippmann-Schwinger equation, follows 
The asymptotic form of the wavefunction for 
the limit r ~ 00: 

dry/dO = IM(k', k)12. 

An alternative derivation of this formula follows 
from time-dependent scattering theory, based on the 
relation 

(~ut I kin) = (211")3 c5(k' - k) 

+ 811"2ic5(k,2 - k2)M(k', k). 

The quantity (k' out I kin) is known as the S matrix. 
The presence of 5 functions shows that the S matrix 
itself is not analytic, although the scattering 
amplitude Mis. 

4. Collision Theory 

Heisenberg' in 1943 suggested that collision theory 
was more fundamental than the conventional form 
of quantum mechanics. He believed that quantum 
mechanics does not apply to very small distances. 
The statistical interpretation of the wavefunction 
in collision theory need only be applied at large 
distances, and only for noninteracting particles. 
For this reason, it is desirable to deal directly 
with the scattering amplitude. It should become 
unnecessary even to admit the existence of wave­
functions or potentials. 

Blankenbecler, et al.3 have shown that the 
Mandelstam representation of the scattering ampli­
tude, together with unitarity, provides a complete 

2 W. Heisenberg, Z. Physik 120, 513, 673 (1943); z. 
Naturforsch. 1,608 (1946). 

3 R. Blankenbecler, M. L. Goldberger, N. Khuri, and 
S. Treiman, Ann. Phys. 10,62 (1960). 
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dynamical scheme, fully equivalent to the Schro­
dinger equation whenever the latter is valid. We 
therefore study potential scattering only as a cor­
respondence principle from which we may infer 
certain features of the pure scattering amplitude 
theory. Whether or not this inductive argument 
leads to a superior form of quantum mechanics for 
strong interaction physics, is an experimental 
question which remains open. 

5. Unitarity 

One of the essential features of our theory will 
be the unitarity condition. Stapp4 has particularly 
emphasized the importance of unitarity, and gone 
so far as to deduce the analyticity properties more 
or less as a consequence. 

The condition 

V·S = 0, 

where S is the probability current flux, simply states 
the conservation law of particles. Glauber5 has 
given a derivation of unitarity starting from a slight 
generalization of this identity, namely, 

~ 

V' [(x I kin)V(x I krn)*] = O. 

This identity holds provided 

Ikl = Ik'l· 
If we integrate Glauber's identity over a large 
spherical volume and apply Green's theorem, and 
finally insert the asymptotic forms of the wavefunc­
tions for large r, we directly obtain the unitarity 
condition 

2~ [M(k', k) - M*(k, k') 1 

= :1rJ dQk" M*(k" , k')M(k" , k). 

For the forward-scattering case k = k', this reduces 
to the optical theorem 

1m M(k, k) = (k/41r)<Ttot. 

III. THE MANDELSTAM REPRESENTATION 

1. Analytic Properties 

The analyticity properties of the scattering 
amplitude may be deduced from the Fredholm 

4 H. P. Stapp, Phys. Rev. 125,2139 (1962). 
& R. J. Glauber, Lectures in Theoretical Physics at Boulder, 

Colorado (Interscience Publishers, Inc., New York, 1958), 
Vol. 1, p. 315. 

solution of the Schrodinger equation.6.7 The simpler 
formal solution provided by the Born series may be 
used only in the absence of bound states, since 
otherwise, the Born series fails to converge. 

The Lippmann-Schwinger equation as it stands 
is not an integral equation of the Fredholm type, 
but by simply iterating once we do obtain a 
Fredholm intergral equation. The solution has 
the form 

(x I kin) = F(x) + D~k) J d3
y N(k; X, y)F(y) , 

where 

F(x) = (xl (1 + G+ V) Ik), 

and N, D are the usual Fredholm numerator and 
denominator functions. 

Khuri's analysis7 of the analytic properties of 
the scattering amplitude is based on the equation 

M = (-1/41r)(k'l V[1 + K + K2 + KR + KRK] Ik), 

where K = G+V, and R = N/D. This equation 
follows immediately from the Fredholm solution 

Ikin) = (1 + R)(1 + K) Ik), 

and the original Lippmann-Schwinger equation 

One need only write the identity 

Ik) = (1 - K)(1 + R)(1 + K) Ik). 

The actual derivation of the analytic properties 
is rather tedious, but consists only of investigating 
the convergence of the various integrals involved in 
our formal solution. 

The scattering amplitude-M(k', k) in the case 
of a spherically symmetric potential-is a function 
of the following scalar products only: 

8 = e, 
8' = k,2, 

t = -(k' - k)2. 

Although the scattering amplitude is nonzero 
even when 8, 8' are not equal, it is sufficient for 
our theory to consider the case 8 = 8' corresponding 
to the physical requirement of the conservation of 
energy. We shall allow the energy 8 and the 
momentum transfer t to assume arbitrary un-

6 R. Jost and A. PaiS, Phys. Rev. 82, 840 (1951). 
7 N. Khuri, Phys. Rev. 107, 1148 (1957); S. Gasiorowicz 

and H. P. Noyes, Nuovo Cimento 10,78 (1958); T. Regge, 
Nuovo Cimento 8,671 (1958). 
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physical and even complex values in the following 
and distinguish separately the physical region ' 

s > 0, 

-4s < t < 0, 

corresponding to actual scattering processes. 

2. Bound-State Poles 

Clearly, the scattering amplitude may have poles 
wherever the Fredholm denominator D(k) vanishes. 
According to the Fredholm alternative, when the 
denominator D vanishes for a particular energy s,,' 
there exists a solution 1/1" (not identically zero) 
of the homogeneous equation 

Hence 1/I,,(x) satisfies the Schrodinger equation, 
and has the boundary condition 

The term vet), given explicitly by 

vet) = (-1/47r)(k' IVI k), 

arises from a portion of the contour at lsi = (X). 

The line integral represents the discontinuity 
across the cut. The residues rB(t) are polynomials 
in t whose order equals the highest angular momen­
tum at which a bound state of energy SB occurs. 

This one-dimensional dispersion relation exhibits 
the analytic properties of the scattering amplitude 
for complex s and also the asymptotic properties 
of the scattering amplitude for large s. 

The Mandelstam representation is a generalization 
of this dispersion relation which exhibits in addi-. ' 
tlOn, the analytic properties of the scattering 
amplitude as a function of complex t. However, 
it does not accurately represent the behavior for 
t~(X). 

Under the condition that the potential be a 
superposition of Yukawa potentials, 

Moreover, from the equation V' S = 0, integrating 
over a large sphere, we obtain Blankenbecler, et al.

3 
have shown that the Mandel­

stam representation is 

and hence Re k" = o. This suggests very strongly 
that a pole in the scattering amplitude corresponds 
to a bound state, with 1/1" the wavefunction of the 
bound state, and binding energy s" = k! < O. 
This fact may be explicitly demonstrated for the 
Coulomb potential and the exponential potential. 
We note that the boundary condition guarantees 
square-integrability if 1m k" > o. 

3. The Mandelstam Representation 

By the methods outlined, one may show that 
M(s, t) is analytic in the upper half k plane, except 
for the bound-state poles mentioned above. There­
fore M(s, t) is analytic in the entire complex s plane, 
except for these same poles, and a cut, 0 < s < (X) , 

which arises from the fact that k = st. 
One may show that the first Born approximation 

is valid at large energies: 

M(s, t) ----7 vet). 

Therefore, with an appropriate contour of integra­
tion, it follows from Cauchy's theorem that 

M(s, t) = vet) + L rB(t) + r'" ds' I,m M(s', :). 
B s - SB .0 7r S - S - tE 

M(s, t) = vct) + L --.!:B(t) 
B s - SB 

+ 1'" ds' f'" dt' p(s', t') 
o 7r (2,.)' 7r (s' - s)(t' - t) 

+ L t" 1'" ds' ~,,(s') , 
" o7rS-S 

where vet) may be written 

The limits of integration are somewhat symbolic. 
In fact, the spectral function p(s', t') vanishes 
outside the domain 

4. The Dynamical Scheme 

Unitarity, together with dispersion relations form 
the basis of a computational scheme that m'ay be 
used in place of the Schrodinger equation. That is 
given a potential VCr), we may compute the scatter~ 
ing cross section and the binding energies of all 
bound states. 

The unitarity condition derived thus far is valid 
only in the physical region. The Mandelstam 
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dynamical scheme is based on an extension of 
unitarity outside the physical region. This is accom­
plished by substituting the Mandelstam representa­
tion into the unitarity condition. 

As the scattering amplitude depends only on 
the scalars 8 and t rather than on the vectors k 
and k', it is convenient to write the angular integral 
involved in the unitarity condition in another way. 
We wish to integrate an expression of the form 

J dQ" 5'rk .k", k'·k"]. 
If we let 

x=k·k", z = k·k' = cos 0, 

we may obtain the desired formula 

where 

J dQ" = 2 J dx J dy A-tO(A), 

1 x y 

A(X, y, z) = x 1 z, 

y z 1 

and 8 is the step function 

O(A) = {O if 
1 jf 

A<O 

A> O. 

An easy way to derive this result is to go to the 
Lehmann coordinate system in which k and k' are 
taken to lie in the XY plane, with k along the X 
axis. If (a, (:J) are polar coordinates of ktl in this 
system, we may write dQtI = da sin {:Jd{:J, and 
the Jacobian is a (x, y)/a(a, (:J) = -sin {:J cos {J 
sin 0, We then need only note that a = (cos {J sin 0)2, 
The factor 2 in our formula occurs because each 
value of (x, y) corresponds to two different points 
on the sphere related by reflection in the XY plane. 

We may write M(s, t) as M(s, z) with z = cos 0; 
here 0 is the scattering angle, and 

t = -28(1 - cos 0). 

The use of the same letter M to denote different 
mathematical functions should not cause any 
confusion. 

The unitarity condition may then be written in 
the form 

ii [M(s + iE, z) - M(s - iE, z)] 

= i1l" sf II dx dy A-tO(A)M*(s, x)M(s, v)· 

When we now substitute the Mandelstam repre­
sentation into unitarity, we must, consistent with 
our policy in this section of writing the scattering 
amplitude as a function of (s, z) instead of (s, t), 
rewrite the denominators (t' - t) appearing in the 
Mandelstam representation as -2s(X - z), where 

X = 1 + 1'/28. 

We then typically encounter the integral 

J dQ" 1A A ~ -
(Xl - k·k") (X2 - k' ·k") 

= 211"1'" ~ o[-aJ 
o X - z [-a(X, AI, A2)]· ' 

The derivation of this formula is a beautiful illustra­
tion of the type of technique involved in· the actual 
proof of the Mandelstam representation,3 and 
we have therefore devoted an appendix to this 
problem. 

Upon taking the discontinuity of the resulting 
unitarity equation across the t cut, we obtain the 
Mandelstam bootstrap equation, 

f
a> dt' fa> dt" 

pes, t) = - -- K(s; t, t', t")O"(t')O"(t") 
p'a 7r pa 1(' 

- f'" dt' f'" dt" K(s; t, t', t")u(t') (¥'(t") + ¥'*(t")] 
p.' 11" (211)' 11" 

1'" dt'1'" dt" + - - K(s; t, t' , t")¥'(t')¥'*(t") , 
(21')" 11" (211)' 11" 

with 

¥'(t') == /(J(S, t') = - I p~ '. • 1'" ds' fS' tf) 

o 11" S - S - ZE 

The function K(s; t, t', tff) is an abbreviation for 

K(s; t, t', t") = (lr)s-I(-artO(-A), 

with 

A == .1(1 + 1/28,1 + t'/2s, 1 + t"/2s), 

and is therefore known. 
The Mandelstam bootstrap equation, also known 

as the extended unitarity condition, may be solved 
by iteration. One may divide the (s, t) plane into 
strips, the Nth of which is given by 

(N p.)2 :::; t :::; [(N + 1)p.]2. 

Given the potential, and hence the potential spectral 
function u(t), we may obtain p in the first strip 
by inspection of the Mandelstam bootstrap equation, 
which then reduces simply to 

p = Kuu, 
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in an obvious symbolic notation. After N interations, 
the bootstrap equation gives p and hence cp in 
the Nth strip. 

5. Infinite-Momentum Transfers 

Our dynamical scheme as it stands is not yet 
complete, for a glance at the Mandelstam representa­
tion shows that we need also know the bound-state 
poles and the single-dispersion functions g,,(s'). 
These functions are not determined because of the 
incompleteness of the Mandelstam representation 
with respect to the asymptotic properties of the 
scattering amplitude for t -+ OJ. A study of this 
asymptotic limit will in fact lead to a dynamical 
scheme which is complete. 

IV. REGGE POLES 

1. Complex Angular Momentum 

It is possible to make a heuristic argument as to 
why the asymptotic properties of the scattering am­
plitude in the limit t -+ OJ are related to the analyti­
city properties of the partial-wave amplitudes as a 
function of complex orbital angular momentum. 
We offer it only to clear up the aura of mystery 
usually associated with Regge analysis, and do not 
claim it to be at all rigorous. We do put everything 
on a more rigorous basis later on, although all our 
conclusions will have already followed from the 
crude heuristic argument. 

Consider then the well known formula 
ikr 

if;(k, r, z) -----7 eikrz + M(s, z) ~ , 
T-CXI r 

and suppose that we are allowed to take the limit 
z -+ OJ. We suppose, in this limit, that M -+ OJ. 

Actually, of course, the limits r -+ OJ and z -+ OJ 

do not commute, but all we need do is fix r at some 
large value and let only z -+ OJ. 

Since M -+ OJ, and since the term eikrz remains 
bounded, the wavefunction factorizes into a product 
of a function of z only, and a function of r only: 

eikr 

if;(k, r, z) ~ M(k, z) - (large r). 
%_0:) r 

This important conclusion may also be obtained 
in another way. The Schrodinger equation 

may be rewritten in polar coordinates r, 8, cpo Since 
the scattering solution is cylindrically symmetric, 
we may write it as a function of rand z = cos 8. 
The Schrodinger equation is then 

[ 1 02" r + 1 ~ (1 - l) ~) + e]if;(k r z) 
rar- r 2 az (Jz " 

= V(r)if;(k, r, z). 

The asymptotic behavior of if; for z -+ OJ is de­
termined by this equation. One solves partial 
differential equations by separation of variables; 
thus we expect to find 

if;(k, r, z) = 1: r- 1R,,(r)Z,,(z). 
" 

For large z, a single one of these terms will dominate 
so that again, 

if;(k, r, z) ~ r- 1R(r)Z(z) , 

the wavefunction factors. The Schrodinger equation 
now may be used to imply that 

Z(z) ~ (const) za, 

where a is determined by an eigenvalue problem 

( d2_ + k2 _ a(a + 1) _ V(r»)R(r\ = 0, 
dr2 r2 J 

with the boundary conditions 

R(r)~O 

We note that since the limit z -+ OJ is unphysical, 
the wavefunction is not required to be single valued. 
Therefore a does not have to be a real integer. 
In fact, we must allow a to be arbitrary complex. 
Moreover, Z(z) does not have to be a Legendre 
function of the first kind. It may be an arbitrary 
linear combination of P a(Z) and Qa(Z). 

The boundary conditions on R(r) follow from our 
first argument concerning what happens to the wave­
function as z -+ OJ when r is large. (The limit as 
r -+ 0 is found in a similar way.) From this we may 
also now conclude that 

M(k, z) ~ (const) za:. 

This is the Regge theorem.s 

We have been led to the radial equation that one 
also encounters by partial-wave analysis, but as our 
derivation clearly shows, the angular momentum a 
involved must be taken as complex. Moreover, we 
have an additional boundary condition imposed on 
the radial function R(r), which is precisely why 

8 T. Regge, Nuovo Cimento 14, 951 (1959); Ibid. 18, 947 
(1960). 
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this equation is an eigenvalue problem for a. The 
absence of the term proportional to e- ikr that usually 
appears in the radial wavefunction will be seen 
later to be only the condition that the scattering 
amplitude have a pole at angular momentum a. 

2. Jost Functions 

We wish now to put Regge's theorem on a more 
rigorous basis, and to derive a few related results. 
We therefore study the radial equation in somewhat 
greater detail. A good review of some parts of this 
subject has been given by Newton.9

•
10 

The asymptotic form of the expansion of a plane 
wave in Legendre polynomials is given by 

00 ( )1+1 
eik 'x ~ L (2l + 1) --=-:--

r~OO I~O 2zkr 

x P1(cos I.l)[e- ikr + (- )1+1e+ikr]. 

We may interpret the term proportional to e- ikr as 
an incoming wave, and eikr as outgoing wave. 
The conservation of probability allows only a phase 
change in the outgoing wave for a given angular­
momentum channel in the physical wavefunction. 
We may therefore write 

'" (_)1+1 
(x I kin) ~ t; (2l + 1) 2ikr 

X p/(cos 8)[e- ikr + (- )!+ViOle+ikTJ, 

where the 01 are the physical phase shifts. The 
scattering amplitude is given by 

'" 
M(s, z) = L (2l + I)P I (z)M(l, k), 

I~O 

with 
M(l, k) = (lj2ik)[e2ih 

- IJ. 
Again we use the same letter M to denote entirely 

The phase shift is determined by the limit r _ co: 

I/;(l, k, r) _ e -ikr + (_) 1+1e2iSle+ikT. 

In addition to the physical solution 1/;, it is con­
venient to work with two other mathematical 
solutions of the radial Schrodinger equation, 
commonly known as the Jost solutions. ll They 
satisfy the boundary conditions 

tpCl, k, r) ----7 rl+1, 
T~O 

It is clear that since the radial equation is invariant 
under the interchanges k ~ -k, and l ~ -l - 1, 
that fCl, -k, r) and tpC -1 - 1, k, r) are two further 
solutions, provided the proper analytic continuations 
exist. 

The Jost solution tp is defined uniquely by the 
boundary condition only if Re (2l + 1) 2:: 0, which 
we call the right half 1 plane. In the left-hand plane 
we define tp by analytic continuation. Similarly, the 
solution f is defined by the boundary condition 
only if 1m k 2:: 0, and in the lower half plane only 
by analytic continuation. Although the boundary 
conditions are still true outside of these restricted 
half planes, they are no longer defining equations. 

The Wronskian of any two solutions of the radial 
equation is a constant, independent of r, and may 
therefore be evaluated in one of the two limits r - ° 
or r _ ro. Thus, 

~ 

d 
tp(-l - 1, k, r) dr tp(l, k, r) = 2l + 1 

~ 

f(l, -k, r) ! f(l, k, r) = 2ik, 

distinct functions. where 
For arbitrary r, but for physical values of z, 

we may write 

'" (_)1+1 
(x I kin) = L (2l + 1) 2'kr I/;(l, k, r)PI(cos (J), 

1-0 z 

where I/;(l, k, r) satisfies the radial Schrodinger 
equation 

( 
d2 2 l(l + 1) ) -- + k - -- - V(r) .1,(l k r) = 0 drz r2 't' " , 

with the boundary condition 

1/I(l, k, r) ----7 O. 

9 R. G. Newton, J. Math. Phys. 1, 319 (1960). 
10 R. G. Newton, J. Math. Phys. 3, 867 (1962). 

~ 

d 
f dr g == fg' - g/,. 

Jost defined the two Wronskians 

~ 

d 
(2l + l)f(l, ±k) = f(l, ±k, r) dr tp(l, k, r). 

[Actually, Jost writes feZ, -k) for our f(l, +k).] 
Clearly, one may write 

tp(l, k, r) = - [(2l + 1)/2ik][f(l, k)f(l, -k, r) 

- f(l, -k)f(l, k, r)]. 

11 R. Jost, Helv. Phys. Acta 20, 256 (1947). 
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For integer l, we have ip(l, k, r)/(2l + I)! 

2ik ip(l, k, r) 
1/;(l, k, r) = - 2l + 1 fCl, k) . 

Hence, comparing these two equations with the 
definition of the phase shift, we have 

S(l, k) == e2;8! = (_)1 fCl, -k)lf(l, k). 

This formula holds so far only for integer l. In 
extending this formula to complex l, we may choose 
arbitrarily to replace (-) I by e + i T I. This is purely 
a matter of convenience, and any other choice 
would lead to the same physical results. We must 
also define f(l, -k) more accurately as there are 
several possible different analytic continuations 
from +k to _k. 12 

3. Analyticity of ",(1, k, r) 

The analytic properties of the solution ip of the 
radial equation as a function of complex land k 
may be obtained most simply by using power series. 
We shall assume that rVCr) is entire. This large 
class of potentials includes the Yukawa potential 
Ae-P.' Ir. We may therefore write 

ex> 

_r2(k2 
- V) = L: anr". 

n=l 

The coefficients must satisfy the following condi­
tion as a consequence of the fact that r V is entire. 
Given any R, arbitrarily large, there exists a number 
lvI, such that 

for all n. 
The solution ip(l, k, r) is obtained as a power series 

ex> 

ip(l, k, r) = rl
+

1 L: Anr". 
n=O 

The leading coefficient is Ao = 1. The radial dif-
ferential equation imposes the many-term recursion 
relation 

1 n-l 

An = n(n + 2l + 15 ~ an_pAp, 

which may be solved iteratively for the An. 
It is immediately clear from the recursion relation 

that poles occur in the function ip when 2l + 1 = 

-n, with n = 1,2, ... IX>. Moreover, all these poles 
are simple. The function (2l + I)! is an analytic 
function of l with poles at the same points, and 
thus the ratio 

12 A. Bottino, A. M. Longoni, and T. Regge, Nuovo 
Cimento 23, 954 (1962). 

will be entire.13 

Aside from these simple poles, we may show now 
that the function ip defined by the power series is an 
analytic function in the entire 1 plane and the entire 
k pl~ne. We must prove that, except for the points 
2l + 1 = -n, the power series L: Anr" converges. 

Having chosen M such that lanl :::; M I W, we 
now choose, for fixed l, a sufficiently large number 
N such that 

IMI(N + 2l + 1)1 :::; 1. 

Since the first N terms of the power series are 
certainly finite, we may find finally a large number 
Q such that IAnl :::; QIR" for n = 1, 2 ... (N - 1). 
We may now show that the inequality 

IAnl :::; QIR" 

in fact holds for all n ;::: N as well, using only the 
pedestrian method of proof by induction. We 
suppose that the identity has been established for 
n = 1, ... , m - 1, with m ;::: N, and then apply 
the recursion relation to establish the identity for 
n = m. Since R is arbitrary, we have now proved the 
series converges for all r. Q.E.D. 

A brief inspection shows that the coefficients 
An(l, k) are analytic in land k. In fact the co­
efficients An are polynomials in k2 and rational 
functions of l. 

The power series provides the necessary analytic 
continuation of ip(l, k, r) in the left-hand l plane. 
All statements about ip in the left-hand plane in 
the following are based on the explicit power-series 
solution. 
For example, the theorem 

ip*(l*, k*, r) = ip(l, k, r) 

may be proved in this way. 

4. Analytic Properties of f(l, k, r) 

We study the analytic properties of the solution 
f(l, k, r) by the method of Poincare, based on the 
integral equation 

f(l, k, x) = e
ikx + ~ L" dy sin key - x) 

[ 
l{l + 1)J X V(y) + -----Y-2 - f(l, k, y). 

Since 
G(k; x, y) = (11k) sin key - x)(J(y - x) 

----
13 R. Blankenbecler and M. L. Goldberger, Phys. Rev. 

126, 766 (1962). 
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is a Green's function 

(d2/dx2 + kz.yG(k; x, y) = o(x - y), 

we may readily show that this integral equation is 
completely equivalent to the radial Schrodinger 
equation. The boundary condition on f is, of course, 
built in automatically. 

It is convenient to separate our study into two 
parts. We first study the easiest case, 1m k ~ 0, 
and later the more involved case 1m k :::; O. 

Iterating the integral equation, we obtain the 
Neumann series solution 

'" 
tel, k, x) = L f,,(l, k, x), 

n=O 

with 

fo(l, k, x) = Cik~. 

The nth term of the series is 

1 1'" 1'" fn(l, k, x) = k" ~ dYI'" h-, dy" 

X sin k(YI - x) '" sin k(Yn - Yn-l) 

X eikU
• t1 [ V(Yi) - 1(1 ~ 1) J. 

By inspection, the integrand of the nth term is entire 
in both 1 and k. The analytic properties of the 
integrals are therefore determined by the con­
vergence properties. The factor sin key - x) diverges 
as Y ~ co when k is complex. Therefore the integral 
can be convergent only if elkll can damp out this 
divergence, which is the case for 1m k ~ O. Since 

Isink(y - x)l:::; e+(Imk)(.-~), 

and 

when 1m k ~ 0 and y ~ x, one can indeed show that 
the integrals converge, and we can place the bound 

Ifni:::; e-(lmk)%.;! [1!ll'" dy IV(Y) - 1(1 ~ l)IJ 
Convergence is assured if we postulate the inequality 

lV(y) I < M/y2 

to be satisfied by the potential. The majorant series 
obtained in this bound is an exponential series, and 
hence the Neumann series converges. We have thus 
proved that the solution f(l, k, x) is analytic in the 
product of the entire 1 plane and the upper half 
k plane. 

Having disposed of this trivial case, we now 

proceed to investigate analyticity in the lower half 
k plane. The technique we use is a generalization of 
one extensively used in the researches of Martin.a .ls 

The main idea is to write the potential as a super­
position of exponential potentials 

VCr) + 1(1 -!; 1) = r'" dA g(X)e-~r. 
r Jo 

The value of this is easily understood from the work 
of MalO which shows that the analytic structure of 
the scattering amplitude is particularly simple for 
an exponential potential, and consists merely of 
poles. These poles will here be spread out and become 
cuts. 
The Yukawa potential may be written as such a 
superposition: 

-l'r f'" c_ = dX e- Xr 

r ' l' 

as may be the centrifugal potential 

~ = 1'" X dX e-Xr
• 

r 0 

We shall assume in general that the weight function 
g(X) satisfies 

Ig(X) I < GA. 

Our procedure is to substitute the representation 
of the potential as a superposition of exponential 
potentials into the Neumann series, and integrate 
over YI ... Yn. It is convenient to introduce a set 
of variables 

Then we may write the nth term of the Neumann 
series as 

where 

X y(tl - t2! ... g(tn-l - t,,)g(tn). 

II ti(ti - 2ik) 
i-I 

This representation clearly, shows the existence 

14 A. Martin, Nuovo Cimento 14, 403 (1959); J. Math. 
Phys. 1, 41 (1960). 

15 D. 1. Fivel and A. Klein, J. Math. Phya. 1, 274 (1960). 
16 S. T. Ma, Phys. Rev. 69, 668 (1946); H. A. Bethe and 

R. F. Bacher, Rev. Mod. Phys. 8, III (1936). 
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of a cut along the negative imaginary k axis, 
o S 2ik S 00. 

To show that, apart from this cut, the function 
f(l, k, x) is analytic in the lower half plane, we need 
only argue that (1) the integrals definingf" converge, 
and (2) the Neumann series itself converges. 

We use the postulated bound on g("A) and 

1 < 1 
lSi - 2ikl - 2 IRe kl 

The following integral is then encountered: 

i t. dS
2 

... 1 t.-, ds .. (SI - S2) ... (S,,-I - s .. ). 
o 0 SI ... S"-I 

This integral may be carried out by induction. 
We then obtain 

( 
G )n (S ),,-1 

IPnl S 21Rekl n!(n
l

-1)! 

We also obtain the bound 

If I < +IImklz ( G )" 1 
" - e 2 IRe k I x n!' 

Thus the convergence of the integrals is proved for 
nonzero x, and the majorant series for the Neumann 
series is an exponential series. Q.E.D. 

We shall now discuss f(l, k, x) as a function of k 
on a Riemann surface. In the preceding we have 
restricted ourselves to one sheet 

- t7r S arg k S + !7r 
of the full Riemann surface. 

The discontinuity of IU, k, x) across the branch 
cut is independent of the potential for 0 S 2ik S Jl.. 

We may extend the function f(l, k, x) onto new 
Riemann sheets by winding around the branch 
point k = O. In winding around, we agree to avoid 
the nonkinematic part of the cut Jl. S 2ik < 00. 

Any point of the Riemann surface so defined may be 
represented in the form 

k = Ikl ei<P, 

where the phase cp tells us how many times we have 
wound around the kinematic branch point. 

On this Riemann surface we may define an 
operation of complex conjugation by 

k* = Ikl e-i<p. 

This operation applied to a value of k on the principal 
sheet, -t7r ::::; arg k ::::; +!7r, yields points on 
other sheets. If k is on the principal sheet, then 
k *e'" is again on the principal sheet. 

Let us now confine our attention to the principal 
sheet, and actually compute the discontinuity across 
the part of the cut 0 ::::; 2ik ::::; Jl.. The Neumann 
series is 

f(l, k, x) = eikZ[1 + f (" d"A1 .. , (" dX .. 
70-1 10 10 

It is convenient to write a partial fraction expan­
sion 

70 1 

g (XI + '" + X;)(X1 + ... + Xj - 2ik) 

= t r,(XI,"', Xn) . .-1 XI + .,. + X. - 2ik 

The discontinuity may be computed by the identity 

1/(x ± iE) = rJ'/x =r i7ra(x). 

We then obtain 

fCl, k + E, x) - f(l, k - E, x) 

'" " 1"" 1'" = 27rieikz I: I: dAI • • • dX" 
n:sl a-I 0 0 

x g(X
I
) ••• g(X

n
) ·e-(A'+"'+A.)z 

X r.a(XI + ... + X. - 2ik). 

The a function here requires that XI' "', X. be less 
than 2ik, and hence less than Jl.. Therefore, 

g(XI) .. , g(X.) = [l(l + 1) ]'XI ... X •. 

We may carry out the integral over X" eliminating 
this variable wherever it appears by use of the 
a function. Finally, we may interchange the suma­
tions over 8 and n, and thus obtain 

fCl, k + E, x) - f(l, k - E, x) = BU, k)f(l, -k, x), 

with 

B(l, k) = t ~ [l(l + 1)]" 

X fI~~------~~A~,----------~ 
'-I (AI + + A,)(AI + ... + A, - 2ik) 

We note that B(l, k) is independent of g(X), and 
hence of the potential VCr), and also B(l, k) is 
independent of x. Therefore, 
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B(l, k) 
fCl, k + E, x) - f(l, k - E, x) 

f(l, -k, x) 

_ foC[, k + E, x) - foC[, k - E, x) 
- fo(l, -k, x) 

where foCI, k, x) is the solution of the radial equation 
in the case V = 0: 

1o(l, k, x) = ei(l+1)"/2(1I"~xy[JI+t(kX) + iN1+;(kx)]. 

Since B is independent of x, we may evaluate it by 
examining just the limit x ---t 0: 

( 
2 )1 1 r(l + t) 

1o(l, k, x) ~ ---:-k -Y--1-' 
%-0 -~. X 7r:l 

We then obtain 

B(l, k) = 2i sin 1I"l. 

In particular, for 1 = real integer, the kinematic 
cut is simply absent. 12 

The Wronskians f(l, k) satisfy the same type of 
relation. We may remove our restriction to the 
principal sheet and write 

f(l, k) - f(l, ki"i) = 2i sin 1flf(l, ke"i). 

This is precisely the boundary condition we found 
necessary to impose in our heuristic considerations. 
We note that as the energy varies, a given pole a(s) 
will move continuously, sweeping out a trajectory. 
If a(s) is a real integer for some negative energy, 
we obviously have a bound state at that energy 
and angular momentum. If Re a(s) = real integer, 
and 1m a is small for some positive energy, we have 
a resonance state at that energy. 

6. The N j D Method 

In order to understand and appreciate the 
economy of dynamical schemes based on Regge 
poles, it is appropriate to review the status of the 
older N /D method. We have already derived all 
the analytic properties we need. 17 We restrict 
ourselves, therefore, to the case of just one bound 
state of no spin. Our aim will be to calculate the 
binding energy of this bound state in the 1 = ° 
channel by dispersion theory. 

The S matrix in the 1 = ° channel is given by 
f(O, -k)/f(O, k), and hence the scattering amplitude 
may be written as 

M(O, k) = N(s)/D(s) , 

Our explicit solution also implies a reality condition with 
which we may write as N(8) = (lj2ik) [f(0, -k) - .f(0, Ie)], 

f*(l*, k*e"i) = f(l, k). 

N ow that the analytic structure is clear, we may 
for the first time extend the definition of the S 
matrix, previously given only for real-integer 
angular momentum, to arbitrary complex l: 

S(l, k) = [f(l, ke"i)/f(l, k)]ei"z. 

5. Regge Poles 

It is clear from the definition of f(l, k) as a Wron­
skian that it possesses whatever analytic properties 
are common to both cp(l, k, r) and f(l, k, r) and 
to their first derivatives. It follows therefore that 

D(l, k) == f(l, k)/(2l)! 

is entire in 1 and in k except for a branch cut along 
the negative imaginary k axis. The S matrix, being 
the ratio of two entire functions of l, is itself a 
meromorphic function of l, the poles of S being the 
zeros of f(l, k). These are called Regge poles. S 

If 1 = a is the position of a Regge pole, thenf(a, k) = 
0, and hence, 

and 

D(s) = f(O, k). 

Since N is invariant under the interchange k +=± - k, 
it possesses no right-hand cut in s. Since D has 
no singularities in the upper half k plane, there is no 
left-hand cut in s. Moreover, we may show9 that 
N ---t 0 and D ---t D( <x» = const as s ---t <x>. For 
convenience we may change the normalization of 
both Nand D by dividing by D( <x». 

These properties of Nand D imply the pair of 
dispersion relations 

f -~'/· ds' 1m N(s') . 
N(s) = _'" 11" S' - S - ie ' 

D(s) = 1 + 1'" ds' ,1m D(s') .. 
o 1I"S-S-'!,E 

From the relation f*(0, k*) = f(O, -k), which 
expresses the unitarity of the S matrix, we may 
derive 

1 _ i 
1m MeO, k) - (-8). 

17 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 
467 (1960). 
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for s > 0; and since N is real for s > 0, we have 
1m D = N 1m JIor l

, or, 

1m D(s) = (-s)!N(s)(j(s). 

Similarly, for s < 0, we have D = real, and hence, 

1m N(s) = D(s) 1m M(O, k)O(-s - 1L2/4). 

Inserting these two relations into the dispersion 
relations for Nand D, and eliminating N, we obtain 
the integral equation 

DCs) = 1 + 1-1
"' ds' DCs;) , 1m M(s'~ 

-00 11' (-s)' + (-s)' , 

which may be transformed to a Fredholm equation 
by a change of variable, x = (-s')-l. Given 1m 
MCs') for s' < 0, we may solve this equation, and 
obtain the bound states as the solutions of D(s) = 0. 
The problem of obtaining the bound states is thus 
reduced to obtaining the discontinuity of the 
partial-wave M(O, s) along the left-hand cut. 

We have seen that one may determine pes, t) 
iteratively by the Mandelstam dynamical scheme, 
but so far rand g(s) remain undetermined. 

Now suppose we write down the Mandelstam 
representation, allowing for a single bound state, 
and project out the S-wave amplitude 

I I dz 
M(O, s) = -I 2 M(s, t). 

We recall here that t = -2s(1 - z). The left-hand 
cut in M(O, s) has as its source the denominators 
(t' - t) of the Mandelstam representation. The 
(s' - s) denominators, such as appear in the single­
dispersion term, contribute only the right-hand cut. 
Thus when we take the discontinuity across the 
left-hand cut, the unwanted terms very conveniently 
drop out, and we obtain 

[1m M(O, s')h = - L~ ~ [u(t)(j(t - /) 

+ 100 ds' p(s', t),O(t - 4/)J. 
o 11' S - S 

This equation completes the dynamical scheme. 
To sum up, the complete dynamical scheme is the 

following. We are given the potential VCr) and 
hence u(t). We begin the calculation by computing 
the spectral function pes, t) using the Mandelstam 
bootstrap equation, symbolically 

p = Kuu + Kpu + Kpp. 

The second step is to compute the left-hand dis­
continuity Im M(l, s) for the channels containing 

• o 
o FIG. 1. Contour 

for Regge repre-
__ +-011-...... __ I+ _____ >+-sentation. x repre-

sents poles due to 
sin 'll"Z; 0 represents 
poles due toM(I,k). 

o 

o 

bound states, and the third is to use this result to 
solve the integral equation for D. Finally, we may 
locate the zeros of D to obtain the bound states. 

7. The Regge Theorem 

The Regge theorem follows immediately by the 
application of the Sommerfeld-Watson transforma­
tionl8 to the Legendre series: 

00 
M(s, t) = L (2l + I)M(l, k)Pt(z). 

t~O 

Consider the integral 

I = ~ 1 dl (2l + 1)~(l, k)PtC -z) 
2~ j sm 1I'l ' 

where the contour is a semicircle in the right half 
l plane (cf. Fig. 1.) The Legendre function P1(z) is 
entire in l; thus by Cauchy's theorem, the integral 
is the sum of residues of the poles of M (l, k) and of 

1 +00 c-r 1-
--= L ---. 
sin 1I'l n_-oo 11' l - n 

These poles at l = 0, 1, ... co yield the partial­
wave series. 

We may write 

M(l, k) = MoCl, k) + L l ~n(S) () , 
n an 8 

where M 0 is analytic in the right half l plane. 
We thus obtain Regge's representation for the 

scattering amplitude: 

+ i r-!+'oo dl (2l + I)~(l, k)Pl( -z). 
2 Ll-.oo sm 1I'l 

18 P. M. Morse and H. Feshbach Methods of Theoretical 
Physics (McGraw-Hill Book Company Inc., 1953), Vol. 1, 
p.413. 
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We have already omitted the contribution from 
the semicircle at III = co, which is justified only if 
s is real and positive. For negative energies, a 
different representation must be chosen. 

For Re (2a + 1) 2:: 0, the asymptotic behavior 
of the Legendre function is given by19 

P a(Z) -::,-7 (~a)(zI2)a, 
while in the left-hand plane we may use the relation 
P a = P -a-I' For this reason, Legendre functions 
are not very convenient for Regge analysis in the 
left-hand plane. 

The Regge representation immediately implies 
that the asymptotic behavior of the scattering 
amplitude for t ~ co is given by 

M(s, t) --7 b(s)tac .) , 
t-'" 

where a(s) is the leading Regge trajectory, that is, 
the Regge pole furthest to the right in the complex 
1 plane. 

It must be remarked that the Regge theorem has 
been proved only for real, positive energies. It also is 
true for real, negative energies. For complex energies 
we have no proof, although the theorem is probably 
true. 

8. Infinite Angular Momentum 

The behavior of M(l, k) for 1 ~ co is required in 
the above proof of the Regge representation. We 
shall here prove that when 1 ~ cx> along any ray in 
the right half plane, we have 

M(l, k) --7 C(k)e- al
, 

1-", 

where 
cosh a = 1 + l12k2

• 

It is interesting to remark on a kind of duality 
that exists between the variables land z. Just as 
the analytic properties in 1 imply the asymptotic 
properties for large z, so also are the asymptotic 
properties for large 1 closely related to the analytic 
properties of the scattering amplitude as a function 
of complex z. In fact, for 1 = real integer, but 
arbitrary complex z, we have20 

IPz(z) I s Iz + (Z2 - l)tll, 

and hence, using the Weierstrass majorization test, 
the Legendre series 

IV Bateman Manuscript Project, edited by A. Erdelyi, 
Higher Transcendental Functions (McGraw-Hill Book Com­
pany, Inc., 1953), Vol. I, p. 164. 

20 E. W. Hobson, The Theory of Spherical and Ellipsoidal 
Harmonics (Cambridge University Press, 1931), p. 60. 

'" 
M(s, t) = L: (2l + .. I)M(l, k)P1(z) 

1-0 

converges in the region 

Iz+(i-l)il<e a
• 

This is precisely the Lehmann ellipse.21 Perhaps 
this observation is the germ of an alternative proof 
of the Mandelstam representation. 

We start from the Schrodinger equation, and for 
simplicity, we choose a Yukawa potential. We 
introduce the operator G- 1

: 

G- 1 = !f. + e _ l(l + 11 
dr2 r2 , 

so that the Schrodinger equation can be written 

G-1 Icp) = 7rg(e-I'r Ir) Icp). 

Following Favella and Reineri22
, we introduce the 

Hankel transform representation 

(r I ~) == (r~)iJ'+i(r~). 

These form an orthogonal set of functions because 
they are the eigenfunctions of the operator G- 1

: 

and the normalization 

(~ I e) = o(e - ~) 

is equivalent to the well known Hankel transform 
theorem23 i if 

then 

The solution cpU, k, r) is, except for a normalization 
factor, given by the solution of the SchrOdinger 
equation, written in integral equation form: 

Icp) = Ik) + GV Icp), 

where G- 1 I k) = O. The Yukawa potential in this 
representation is given by24 

,_ (~2 + e2 + f.L2) 
(I; IVI ~) - gQ, 21;1;' • 

21 H. Lehmann, Nuovo Cimento 10, 579 (1958). 
22 L. Favella and M. T. Reineri, Nuovo Cimento 23, 

616 (1962). 
23 Cf. reference 18, p. 944. 
24 G. N. Watson, A Treatise on the Theory of Bessel Func­

tions (Cambridge University Press, 1944), p. 389. 
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We shall, in the following, abbreviate the Legendre 
function of the second kind appearing here by 
writing QI(~' n. 

The Schrodinger equation 

(~ I tp) = 5(~ - k) 

+ e - f + iE L" de QI(~' n(e I tp), 

may be written as a Fredholm equation, viz. 

Then the Schrodinger equation may be written as 

y(l, k,~) = QI(~' k) + g 10'" de K(~, e)y(l, k, e) 

with the kernel 

K(I: 1:') == QI(~' e) - QI(~' k) . 
<;, <; e - ~/2 + iE 

Favelli and Reineri have shown that for suffi­
ciently large l, the kernel becomes arbitrarily weak; 
in fact, 

The proof is very simple. We note thae5 

QI(Z) ----7 (!·,,}(l + I)-l(i - l)-i[z + (i - l)lr(l+l) . 
1-'" 

Thus QI depends exponentially on 1 except when 
Z = 1. Since the argument of QI(~' e) tends to unity 
as ~ ~ coand ue ~ 1, we may conclude that the 
dominant contribution of the integral A 2 comes from 
such values of ~ and e. We thus obtain the estimate 

1'" f(!+")~ Q (I: 1:/ )2 
A2 ---7 d~ de ~<;- , 

1-", R (!-a)~ ~ 

where R may be chosen to be any arbitrary finite 
number, and a any (small) nonzero number. If we 
note that 

QI(~' (1 ± (1)~) ---7 Z-;(1 + (1)-z, 
~-'" 
1-", 

the integration becomes trivial and yields the result 
quoted. (It is convenient to use 1/~ and ~' I~ as new 
integration variables.) 

Since A 2 < M Il3 for large l, it foIlows26 that 
the series 

y = Q + KQ + K2Q + 
is a uniformly (with respect to ~) asymptotic 
(for large l) series. The uniformity is important 
because we wish to extract information about the 
phase shifts, which requires an interchange in limits. 
In fact, we obtain 

and the phase shift may be obtained by considering 
the limit r~ co. Finally we obtain 

M(l, k) ~ -;%2 QI(k, k), 

or, M ~ e- az, as 1 ~ co, with a = 1 + li/2e. 

9. Dynamical Schemes Based on Regge Poles 

Several schemes have been set up which employ 
Regge poles in one way or another. The simplest and 
clearest calculational scheme based on Regge poles 
is that proposed by Chew, Frautschi, and Mandel­
stam.27 In this scheme, we start as before by com­
puting the spectral function pes, t), using the 
Mandelstam bootstrap equation. Having accom­
plished this, however, we do not solve the integral 
equation for D as in the old-fashioned N / D scheme, 
but instead simply extrapolate to large-momentum 
transfers. 

For simplicity, we shall concentrate on the leading 
trajectory. Since the Regge theorem provides us 
with an asymptotic expansion for large t, we may 
also obtain all the others by subtracting out the 
leading trajectory. In numerical work it of course 
becomes increasingly difficult to obtain the trajec­
tories after the first. 

By Regge's theorem, we have 

M(s, t) ---7 b(s)t a
(.), 

1-", 

where a(s) is the leading trajectory. If we take the 
discontinuity of this equation across the cut in the 
t plane: 

tp(s, t) = 2~ [M(s, t + iE) - M(s, t - iE)], 

we obtain 

tp(s, t) ---7 -b(s) sin1l"a(s)·(-t)"'(·). 
<-'" 

26 B. Jeffreys and H. Jeffreys, Methods of Mathematical It is this equation, rather than the Regge theorem 
Physics <iiambridge University Press 1950), pp. 655-6. 

IS T. . Apostol, Mathematical Analysis (Addison-Wesley 27 G. F. Chew, S. C. Frautschi, and S. Mandelstam, 
Publishing Company, Inc., 1957), p. 407, Theorem 13-19. Phys. Rev. 126, 1202 (1962). 
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SPIN 

FIG. 2. Known 
Regge trajectories. 

itself that must be used, since 

'P(s, t) = O"(t) + 1'" ds' , p(s', t) . 
o ~ S -- S -- ~E 

may be computed from <p(s, t), while M (s, t) may not. 
The point of course is that unknown pole terms and 
subtractions occur in the Mandelstam representation 
for M(s, t) which do not appear in the above disper­
sion relation for <p(s, t). 

The scheme proposed by Chew, Frautschi, and 
Mandelstam thus achieves an enormous simplifica­
tion in calculating binding energies from the S­
matrix dynamical scheme compared to using the 
Mandelstam representation and the N ID method. 

Attempts have been made to free the scheme from 
the remaining obstacle-the bootstrap equation 
itself. One possibility would be to replace the 
bootstrap equation by a scheme based on the N ID 
technique. Another is to write dispersion relations 
for the position a(s) and residue {3(s) of the Regge 
poles, and apply unitarity directly in their dispersion 
relations. These alternative schemes however are not 
yet sufficiently worked out to report on here. 

10. Applications 

The actual calculation of binding energies by the 
scheme of Chew, Frautschi, and Mandelstam is 
clearly rather difficult because of the necessity of 
using the bootstrap equation. Instead, therefore, 
most people have attempted to bypass this task by 
phenomenological searches for Regge trajectories. 
This has led to a great deal of insight into elementary 
particle physics. 

If crossing symmetry is valid, and if Regge 
trajectories may be analytically continued to 
negative energies, we may conclude that Regge's 
formula also holds for fixed negative momentum 
transfer and large energies rather than fixed energy 
and large-momentum transfer. 

At large energies it is known experimentally that 
all total cross sections tend to constants. Moreover, 
Pomeranchuk's theorem (here regarded as an 

experimental fact) states that particle and anti­
particle cross sections tend to the same constant 
at high energies. Finally, the differential cross 
sections are sharply forward-peaked and possess 
"exponential" diffraction tails 

dO" (dO") -'Yt 
-~- e 
dQ 8~OO dQ t-O • 

All of these known facts may be summarized by 
postulating a "Pomeranchuk-Regge Trajectory." 
This trajectory is to have a larger value of Re a(s) 
than all others, and a(O) = 1 for this trajectory. 
This ensures total cross sections constant at high 
energies. Particles on this trajectory must have zero 
isotopic spin and G parity + 1. These assignments are 
necessary to ensure that particle and antiparticle 
cross sections become equal at high energy. 

The known elementary particles and resonances, 
as well as the Pomeranchuk trajectories P, P' have 
been drawn in Fig. 2. We have omitted a few 
irrelevant particles to avoid cluttering up the 
diagram. The abscissa is taken as mass square, 
rather than mass, in order to make the trajectories 
parallel; there is no reason for believing that this 
parallelism is of any fundamental significance. We 
draw only those trajectories on which at least two 
points are known. 

The main contribution of Regge's theorem in 
this type of plot is the inclusion of the Pomeranchuk 
points. 

We may make a number of conclusions: 
(1) Every high-spin baryon is preceded by a 

lower-spin baryon. 
(2) The fourth pion-nucleon isobar (T = !) has a 

spin and parity i + and a higher mass than reported.28 

(3) The Kerth resonance,29 also called Y~**, has 
a spin and parity i + • 

(4) There are T = 1 analogs of the Kerth re­
sonance with mass about 2 BeV, spin and parity 
i +, which would appear as resonances in the ~~ 
system. 

We shall not go into any greater detail on the sub­
ject of experimental consequences here, as there al­
ready exist many excellent reviews on the subject.3o 

V. CONCLUSION 

We have investigated the model of nonrelativistic 
potential scattering, based on the Schrodinger equa-

28 V. P. Kenney, J. G. Dardis, and G. Brunhart, Phys. 
Rev. 124, 1568 (1961). 

29 L. T. Kerth, Rev. Mod. Phys. 33, 389 (1961). 
30 s. C. Frautschi, M. Gell-Mann, and F. Zachariasen, 

Phys. Rev. 126, 2204 (1962); B. M. Udgaonkar, Phys. 
Rev. Letters 8, 142 (1962). 
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tion. From this model we have deduced analytic and 
unitarity properties, which by themselves form a 
complete dynamical scheme which may be used in 
place of the Schrodinger equation. Two such schemes 
have been reviewed, one based on the N ID method. 
another based on Regge poles. A few experimental 
consequences of the hypothesis of Regge poles have 
been indicated. 

Many unsolved problems remain, of which we 
mention only two. One is the problem of proving 
that Regge trajectories may be analytically con­
tinued to negative energies. Another important 
problem is to extend the treatment to many-body 
channels; one might hope to prove that the impulse 
approximation has an exact counterpart in the limit 
of infinite energies. Here one must of course use 
relativistic dynamics and crossing symmetry. 
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APPENDIX I 

The material in this appendix is related to Sec, 
(IlI.4). We are to evaluate the integral 

I = J dQ 1 l. 
q Al - Pl'q Az - Pz'q 

By Feynman techniques, using 

1 JI dx 
ab = 2 -I [a(l + x) + b(l - x) l" ' 

we may write the integral as 

(

I dx 
I = 21T ., -~-'----b-- , 

• -I ax' + x + c 

with 

and 

a = HAl - Az)2 - t(l - z), 

b = teA; - Ai), 
c = HAl + A2)2 - tel +z), 

z = Pl'P2' 
The singularities of I (z) are of the type called 

coincident singularities by Eden,31 and occur when 
the two roots of the quadratic equation ax2 + bx + 
c = O. This happens when the discriminant b2 

- 4ac 
vanishes: 

.1(Al' A2' z) = O. 

This equation is quadratic in z and there are two 
solutions: 

z = AIA2 ± [(A~ - l)(A; - l)]i "" A",. 

The solution with the minus sign does not give a 
singular point (on the first sheet of the function) 
because the value of x at which the required coinci­
dence of the roots occurs, lies outside the range 
-1 :::; x :::; + 1 of integration. The other solution 
yields a branch point. 

We may therefore write the dispersion relation 

I(z) = roo dA f(A) . 
J~+ 1T A - z 

The discontinuity across the cut is 

= 21T2 fl dx o(ax
2 + bx + c), 

The two roots ofax2 + bx + c = 0 both lie within 
the range of integration [-1, + 1] and hence, 

41TZ 41T2 
f(A) = -(b-2 --"--4ac)t = [-.1(A, AI, A2TIf" 

Q.E.D . 

31 R. J. Eden, Phys. Rev. 119, 1763 (1960). 
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New Approach to Low-Energy Potential Scattering* 

ROGER F. DASHEN 

Sandia Laboratory, Albuquerque, New Mexicot 
(Received 23 October 1962) 

The problem of low-energy potential scattering is reformula~d in .a manne~ suggested by. the 
"invariant imbedding" techniques of transport theory. The differentIal equations thus obtamed 
have several conceptual and computational advantages over the Schrodinger equation. So~e ~ew 
bounds and approximations are derived and a rigorous investigation of the Born approximatIOn 
is carried out. 

1. INTRODUCTION 

I N a recent paper, MacCallum1 has applied the 
methods of "invariant imbedding," previously 

confined largely to transport theory, to the calcula­
tion of phase shifts and bound-state energies in 
quantum mechanics. When restricted to low-energy 
potential scattering, these techniques provide a 
formulation of the problem which is, at the same 
time, elegant and of considerable practical value. 
In this paper, we will follow the basic philosophy 
of "invariant imbedding" as far as the kinematics 
are concerned, but for lack of space and because the 
dynamics of the problem are well known, no attempt 
will be made to derive the dynamical equations from 
first principles. The basic idea will be to replace the 
Schrodinger equation by a differential equation 
which will couple the scattering lengths of a family 
of potentials with varying range. The potential with 
zero range will provide a boundary condition, and 
the solution to the original problem will be obtained 
by letting the range tend to infinity. Besides provid­
ing considerable physical insight, the differential 
equations obtained in this manner, are more con­
venient for numerical work than the Schrodinger 
equation and can be used to derive new bounds and 
approximations. 

In general, the only restrictions placed on the 
potential are that it be spherically symmetric, and 
that the integral I~ IrU(r) I exist. 

2. DIFFERENTIAL EQUATIONS 

Low-energy potential scattering is usually de­
scribed by two parameters-the scattering length a 
and the effective range b. They are defined by 

* Work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

t Present address: Department of Physics, California 
Institute of Technology, Pasadena, California. 

1 C. J. MacCallum, "'Invariant Imbedding' and Wave 
Propagation in Inhomogeneous Media," Sandia Corporation, 
SC-4669(RR), (November 1961). 

(1) 

where the S-wave phase shift 0, is determined by the 
radial Schrodinger equation and boundary con­
ditions. 

U"(x) + W - U(x)]u(x) = 0, (2) 
u(O) = 0 u(x) "" sin (kx + 0), x-t 00. 

Since the scattering length and effective range are 
the quantities of primary physical interest, we wish 
to formulate the problem in a manner which will 
not require the introduction of the wavefunction u. 
To this end, we introduce the family of potentials 
U.(x) defined by 

U,(x) = {U(X) for 0 < x < r 
o for r < x < 00, 

and denote by ke(r) the S-wave phase shift generated 
by the potential U.(x). Since U",(x) = Uex) and 
Uo(x) is identically zero, it follows that e( 00) = o/k, 
and f(O) = O. Furthermore, it can be shown that E 

satisfies the first-order differential equation 

e'er) = -U(r){sin2 k[e(r) + r]l/e, (3) 

which, along with the initial condition f(O) = 0, 
will uniquely determine e(r), and therefore o. 

The simplest proof of Eq. (3) is obtained by 
differentiating both sides of the identity 

( ) 1 -1 [k u(r) ] 
tT = k tan u'(r) - r, (4) 

and using the Schrodinger equation (2) to remove 
u" from the right-hand side. MacCalluml has given, 
however, a more physically satisfying derivation 
which is based entirely on the principles of multiply 
reflected waves and makes no reference to the wave­
function u. Actually Eq. (3) was first used by 
Franchetti2 who obtained it by making a formal 

2 S. Franchetti, Nuovo Cimento 6, 601 (1957). 
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change of variables in the Schrodinger equation. fective range 2(ia + (J/a2
) , must be continuous 

It is known that,3 unless Ur has a bound state at the points where Ur has a zero-energy bound 
of zero angular momentum at zero energy, ~(r) can state. A study of (6) and (7) will show that this 
be written as -n1f/k + e(r) where n is the number additional requirement does, in fact, complete the 
of zero-angular momentum bound states of U" determination of a and (J. 
and E is an analytic function of e in some neighbor- On the other hand, if a is singular, Eq. (6) will 
hood of k = 0. Defining a and (J by the expansion no longer be suitable for numerical calculations. To 

- e(r) = aCr) + (J(r)k 2 + ... , (5) remove this difficulty we define tan JL = -a and 
find that JL satisfies the differential equation 

we immediately find that the scattering length 
of Ur is given by a(r) and a little algebra will 
show that the effective range of Ur is equal to 
2[ta(r) + (J(r)/a2 (r)J. The scattering length and 
effective range of the original potential are, of 
course, obtained by setting r = CD. The mathe­
matically troublesome points where Ur has a zero­
energy bound state are of particular physical 
interest. At these points, a must become infinite 
and it is easy to see that they are the only points 
where the number of bound states of Ur can change. 

Our next task is to determine the differential 
equations satisfied by a and (J. We first assume that 
none of the potentials Ur have bound states, and 
then discuss the general case. With this assumption 
we can expand both sides of Eq. (3) in powers of 
e which yields 

JL' = - U(r cos JL - sin JL)2 JL(O) = O. (9) 

Moreover, a little reflection will show that if we set 

JL(r) = n1l" + p,(r) 

then the number of zero-angular momentum bound 
states of the potential Ur is equal to n and the 
scattering length of Ur is given by (-tan p,). The 
number of bound states and scattering length of the 
original potential are, again, obtained by setting 
r= 00. 

Even in the presence of bound states, (J is formally 
given by the quadrature formula (8). In this case, 
however, the integral (8) will be divergent unless 
the path of integration is moved into the complex 
plane. To circumvent this difficulty, one can remove 
the singularities of the integrand by subtracting 

a' = U(a - r)2 a(O) = 0, 

(J' = 2{3UCa - r) - tU(a - r)4 (3(O) = 0, 

off an analytically integrable function with the 
(6) same singularities. The construction of such a func­
(7) tion should not be difficult since, once it has been 

determined from (9) that a is singular at some point 
and similar equations for the coefficients of the 
higher powers of e. It is not difficult to verify that 
the coefficient of en for n > 0 will satisfy a first­
order linear differential equation so that, having 
found the first n coefficients, the (n + I)st can be 
expressed by a quadrature formula. In particular, 
(3 is given by 

(J(r) = -t for dx U(x - a)4 

ro, it follows from (6) that U(r - a) goes like 
1/ (r - ro) near roo 

The usual method for calculating scattering 
lengths is to integrate the zero-energy Schrodinger 
equation numerically and then examine the asymp­
totic form of the properly normalized solution. Equa-
tions (6) and (9), being of first order, are con­
siderably easier to integrate numerically and, more­
over, only the asymptotic value of a or JL is required. 
Furthermore, if the potential U does not change 

X exp [ - 2 L dy U(y - a) 1 (8) sign, both a and JL will be monotonic functions 
which will greatly facilitate numerical work. Finally, 
Eqs. (6) and (9) have the advantage that it is easy 
to obtain rigorous bounds on the error incurred by 
terminating the integration at a finite value of r. 

In the general case, an inspection of (3) will show 
that a and (J satisfy Eqs. (6) and (7) for all values 
of r with the exception of those points where Ur 

has a zero-energy bound state. To complete the 
determination of a and /3, it is necessary to give 
some prescription for continuing the solution of 
Eqs. (6) and (7) across these singular points. This 
is provided by the physical requirement that the 
inverse of the scattering length I/a, and the ef-

• R. G. Newton, J. Math. Phys. 1, 319 (1959). 

3. INTEGRAL EQUATIONS AND BOUNDS 

In addition to being very convenient for numerical 
work, Eq. (6) can be cast in the form of an integral 
equation-maximum principle which will provide 
bounds and approximations. We first assume that 
U is strictly repulsive, and later indicate what 
changes are necessary if this is not the case. 
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Following a technique due to Kalaba/ one easily 
verifies that, for an arbitrary function g, 

a' = Uea - r)2 

~ U(g - r)2 + 2U(g - r)(a - g), (10) 

where equality holds if and only if g = a. Inte­
grating the differential inequality (10) yields 

aCr) ;::: r dx U(x2 
_ (2) 

Jo 

X exp [2 f dy U(g - y) ] (11) 

where, again, g is an arbitrary integrable function, 
and equality holds if and only if g = a. 

Inequality (11) can be used in a number of dif­
ferent ways. If one replaces g by a in the right-hand 
side of (11), he obtains an integral equation for a. 
On the other hand, one may insert an arbitrary trial 
function to obtain a lower bound on a. Finally, 
if g is chosen such that Ig - al is small, the integral 
(11) should be a very good approximation to a 
since the error involved will be of the second order 
in la - gl. 

The simplest bound is, of course, obtained by 
setting (I = 0 which yields 

aCr) > for x2 U exp [ -21' yU dyJ dx. (12) 

Integral (12) can be done analytically for the 
Yukawa potential U = be-X/x, (b > 0) with the 
result 

a = aero) > log(yb) + Ce-
t

t 

dt 
"6 

= log (yb) - Ei( - b), (13) 

where'Y = .577 ... is Euler's constant. 
The above results hold, of course, only for re­

pulsive potentials. It is easy to verify, however, that 
for attractive potentials with no bound states, one 
need only reverse the inequality signs in (10) 
through (13). On the other hand, for potentials 
which change sign, this method will not provide 
upper or lower bounds since, in this case the inte­
gral (11) has an inflection point at g = a. For the 
interesting case of an attractive potential with a 
repulsive hard core, however, one can calculate the 
scattering length of the core alone and start the 
integration of inequality (10) from the edge of the 
core. This procedure will provide a rigorous upper 
bound on a, provided that the potential has no 

• R. J. Kalaba, J. Math. and Mech. 8, 519 (1959). 

bound states. In any case, a simple integration by 
parts will show that a satisfies the integral equation 
obtained by setting g = a in the right-hand side 
of equation (11), and since the integral has a station­
ary point at g = (x, then if la - gl is small, the error 
involved in equating a to the integral (11) will be 
of second order in la - (II. 

Since in many cases one does not know the exact 
form of U(x), it is convenient to have an estimate 
for the change in the scattering length as the poten­
tial is varied. With this in mind, we suppose that U 
depends on some parameter A. Differentiating both 
sides of (6) with respect to A yields 

(;A a)' = (;~ U)Ca - r)2 + 2U(a - r) :~ a, 

which may be integrated immediately and gives 

!l aCr) = 1r 

dx (!l U)(a - :tf 
d~ o· dA . 

X exp [2 f dy U(a - y) J. (14) 

As an example of how one can obtain useful results 
from Eq. (14), consider the case where U is strictly 
repulsive. It is clear physically that in this case, 
a' can never be zero. It then follows from (6) that 
a < r, and we obtain the inequality 

i~ al = i1t: a(ro)/ < 1~ x21~ ul dx. (15) 

4. THE BORN APPROXIMATION 

The results of the preceding section can be used 
to investigate the validity of the Born approxima­
tion in the low-energy limit. In this limit, the ac­
curacy of any approximation will be determined 
by the accuracy with which it reproduces the 
scattering length and effective range. Thus, from 
the Born approximation for E(r): 

E(r) ~ -fc2 fo' U sin2 
kx dx, 

one obtains the conditions 

a(r) ~ L Ux2 dx, 

,8(r) ~ -! for Ux4 dx. 

(16) 

(17) 

These must be satisfied if the Born approximation is 
to be valid at low energies. 

Again, we first restrict ourselves to purely re­
pUlsive potentials and then discuss the general case. 
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For repulsive potentials, the integral (12) gives a 
lower bound on a and an application of (15) will 
show that the Born integral (16) is an upper bound 

EQUATION (161 

on a, a result previously derived by Kat05 from his 12 
variational principle. Therefore, condition (16) will FIG. 1. Exact and 

approximate inte­
grations of Eq. (6) 
for a spherical 
barrier. 

be satisfied if • 

10''' Ux
2 

dx ~ 1'" Ux
2 

exp [ -21'" yU dyJ dx. (18) 

If Eq. (18) is to be valid, the integral in the ex­
ponential must be small as compared to unity. 
Using this result and integrating the Born integral 
(16) by parts, one finds that if Eq. (18) is satisfied 
then a « r, which in turn implies that (17) is valid. 
Thus for repulsive potentials, condition (18) is a 
rigorous sufficient condition for the validity of the 
Born approximation at low energies. 

For attractive potentials, it is seen that both the 
integral (12) and the Born approximation give an 
upper bound on a, so that condition (18) is a rigorous 
necessary condition in this case. If the potential 
changes sign, no such rigorous statements can be 
made. In any case, however, the integral (12) can 
be expected to be a considerable improvement over 
the Born approximation for the scattering length, 
which implies, of course, that if the latter is to be 
valid, Eq. (18) must hold. We may thus infer that 
for any potential without bound states, condition 
(18) should be a necessary and sufficient condition 
for the validity of the Born approximation in the 
low-energy limit. 

For the repulsive Yukawa potential U = (be-x/x), 
(b > 0), the integrals in (18) can be done analytically 
and one finds that the Born approximation will be 

• T. Kato, Prog. Theoret. Phys. (Kyoto) 6, 395 (1951). 

EXACT 

EQUATION (121 

valid if b is less than about one. In the general case, 
a more than sufficient condition on U, under which 
requirement (18) will be satisfied, is that 

10''' /xU/ dx « 1. (19) 

5. AN EXAMPLE 

We conclude with a simple example illustrating 
the general behavior of the function a and some of 
our bounds and approximations. For the spherical 
barrier 

U(r) = {I for 0 < r < 2 

o for 2 < r < (X) 

Eq. (6) can be integrated analytically with the result 

a(r) = {r - tanh r for 0 < r < 2 

2 - tanh 2 for 2 < r < (x). 

Figure 1 shows a plot of a and the upper and lower 
bounds obtained from Eq. (16) (the Born approxi­
mation), and Eq. (12). 
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Relativistic Coulomb Scattering*t 

BERNARD ROSEN 

Stevena Inatitute of Technology, Hoboken, New Jersey 
(Received October 20, 1961) 

Contour integration is employed to evaluate analytically the angular dependence of the relativistic 
correction terms to the Rutherford cross section for the scattering of electrons by nuclei at high 
energies. The phase shifts obtained by Mott from the solution of the Dirac equation are expanded 
in powers of the fine structure constant, and the resulting infinite sums are converted into integrals in 
the complex angular-momentum plane. In tum, these integrals are evaluated by distorting the path 
of integration and by the use of integral representations. In this manner, the angular dependence of 
the cross section is obtained in closed form up to terms of the fifth (fourth) order in the cross section 
(wavefunction). The form of the correction term corresponding to an arbitrary power of the fine 
structure constant is found in terms of two-dimensional integrals involving elementary transcendental 
functions. A related problem, the nonrelativistic scattering for an attractive l/rs potential is also 
discussed. 

1. INTRODUCTION 

I N recent years several investigations, l both theo­
retical and experimental, have been undertaken 

to determine the strncture of nuclei (including the 
proton) from the results of the scattering of fast 
(i.e., relativistic) electrons by nuclei. The experi­
mental data and the theoretical results essentially 
measure the deviation of the actual scattering from 
that due to a point nucleus and thus reveal certain 
details of the charge distribution. It is this scattering 
by a point charge that will concern us here. 

In this paper we shall first present an outline of 
the Mott calculation,2 carry out an expansion of 
phase shifts in increasing powers of the fine struc­
ture constant times the nuclear charge, and sum 
the resulting series involving Legendre polynomials 
by means of the Watson transformation. By use of 
this last method it is possible to evaluate in closed 
form all the angular coefficients of the powers of a 

that enter into the differential cross section to order 
a5 in terms of elementary transcendental functions 
and the dilogarithm of Euler. We then show that 
the coefficient of an arbitrary power of a can be 
expressed in terms of sums of two-dimensional inte­
grals whose integrands contain only elementary 
transcendental functions. Inasmuch as certain of 

* The research reported in this paper has been sponsored 
~y the Geophysics Research Directorate of the Air Force 
Cambridge Research Center, Air Research and Development 
Command under Contract No. AF 19(604)4555, and the 
Office of Naval Research under Contract No. Nonr 285(15). 

t This paper is based upon a thesis submitted to the 
Department of Physics of New York University in partial 
fulfillment of the requirements for the Ph.D., (1959). 

1 R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956); 
D. G. Ravenhall, ibid. 30, 430 (1958). Both of these reviews 
contain references to a rather extensive literature. 

2 N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929). 

the sums of Legendre functions times functions of 
angular-momentum quantum number contained in 
the papers alluded to above converge very poorly, 
equivalent integrals may be more amenable to 
calculations. Finally, we indicate the nature of the 
functions required to express the angular dependence 
of the higher-order correction terms to the cross 
section. 

2. FORMULATION OF THE PROBLEM 

2.1 The Mott Formula3 

According to Dirac, the wave equation obeyed 
by electrons in a force field with a scalar potential r 
(vector potential A = 0) is given by 

([E - eVjc] + a·p + {3mc)t/; = 0, (1) 

where if; is the four-component spinor 

if; I 

t/;2 
t/;= 

if;3 
(2a) 

t/;4 

In (1), p is the momentum, m the mass, and E the 
energy of the particle; a and {3 are the 4 X 4 matrices, 
one of whose possible representations is indicated 
symbolically by 

- [0 (J"j (Xi -

(J', 0 
and {3 = [1 OJ. 

o -1 
(2b) 

3 N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Oxford University Press, New York, 1949), 2nd 
Ed., pp. 76-85. 
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Here U; are the usual 2 X 2 Pauli spin matrices and 1 
is the 2 X 2 unit matrix. 

Before considering the Coulomb case, one first 
develops the formalism for potentials which decrease 
at infinity at least as rapidly as I/r<+\ E > O. 
Consider those solutions with E > mc2 that obey 
the following boundary conditions: 

1/Ix finite at the origin, (3a) 

and 
ikz 

1/Ix ~ axeikr + ~ ux(rJ, cf», 
7_ 00 r 

(3b) 

1. (~ _ ~r + mc)F + dGn - !!: G = 0 (9a) 
h c c n dr r '1 , 

! (~ _ e V _ mc)G + dFn + n + 2 F = 0 (9b) 
h c c 'I dr r 'I , 

after the F" are eliminated. Fn represents the radial 
wavefunctions associated with 1/11 and 1/12' G-n - 1 
satisfies the equation corresponding to (9a, b) with 
n replaced by -n - 1. If the asymptotic form 
(r ~ CX» of the G's to be taken to be 

Gn rv (l/r) sin (kr - n1r/2 + 1]'1)' 

G -'1-1 /"V (I/r) sin (kr - n1r /2 + 1]-'1-1), 

(lOa) 

(lOb) 
where r, 8, cf> are the usual spherical coordinates 

then inei~'Gn and i'1ei~-'-'G_n_l are the radial func­
and k is the momentum divided by h. The dif-

tions that will have the desired asymptotic form. 
ferential cross section is given by 

Finally, then, the wavefunctions are given by 
4 4 

u(8, cf» = L lu(8, cf>1
2/L laxl 2

• 
1 1 (4) 1/13 = i:, {(n + I)ei~'Gn 

Since it can be shown by reference to the plane wave 
solutions of (1) that 

'1-0 

~ 

+ i~-n- 'G I 'nn ( 8" ne -'1-1 Z r n cos ), (Ua) 

(5) 1/14 = ~ {+ ei~'Gn 
- ei~-'-'G_'1_di'1'P~I)(cos 8)ei~, (Ub) 

the cross section simplifies to or 
~ 

( ) _ fuJ2 + lu412 
u 8, cf> - la

3
12 + la

4
12 ' 

(6) 2ikf(8, cf» = L {en + I)(e2i~. - 1) 
'1-0 

If the beam is initially polarized along the direction + n(e2i~-.-, - I»)'P '1( cos 8), (I2a) 
of propagation (z), then the solution desired is of ~ 
the form 2ikg(8, cf» = L (ii~. - e2i~-n-')'P2'(cos 8)ei~. (l2b) 

ikr 

1/13 ~ eikz + f(8, cf» ~ , 
r--tco r 

ikr e 
1/14 ~ g(8, cf» - , 

r_OO r 

(7a) 

(7b) 

where r, 8, and cf> are the usual spherical coordinates. 
By expanding the wavefunction in spherical 

harmonics Darwin4
•
5 found the following pairs of 

solutions for the partial waves: 

'1-1 

For the case of the Coulomb interaction, as in 
the nonrelativistic formalism, we keep (Ua) and 
(Ub), but the phase shift is determined by com­
parison of the asymptotic form of the G's with 

(I/r) sin (kr + 'Y In 2kr - n1r/2 + 1]n), 

where'Y == Ze2/hv == ac/v == a/{3. 
Mott2 solves (9) to find 

(1/I3)n = (n + I)'P n( cos 8)G n(r) , 

(1/I4)n = Gn(r)'P~1)(cos 8k"'; 

2i~-n_' _ n - i'Y' r(P'1 + 1 - i'Y) i~(n-p.) (I3a) 
(8a) e - Pn - i'Y r(p" + 1 + i'Y) e , 

(8b) 
with Pn = +(n2 

- (
2 )1/2, "{' = "{(I - {32)1/2, and 

rex) is the usual Gamma function. Using the 
where Gn is a solution of the coupled equations abbreviations 

4 G. Darwin, Proc. Roy. Soc. (London) AIlS, 654 (1928). 
5 There is a difference in sign between the Pn (IPs used 

here and those quoted by Mott (reference 2) and Darwin. 
Those used by Darwin and Mott also differ by factors 
proportional to either n or n + 1. 

Cn = _e-irpT(p" - i'Y)/r(p" + I + i'Y), 

F(8) = (i/2) 

X L (-I)"{nCn + (n + I)Cn+,}Pn(Cos 8), 

(I4a) 

(14b) 



                                                                                                                                    

394 BERNARD ROSEN 

G(e) = (i/2) 

X L (-If{n2Cn - (n + !?Cn+1lP"(cos 8), (l4c) 

Mott finds that6 

kf( e) = i,),' F + G, (l5a) 

kg(8) = {i')"(l + cos 8)F + (1 - cos O)G}/sin 8, 
(15b) 

where he has used the relations 

Pn+1(cos 0) = cos ePn + [sin (e)/(n + l)]P~I)(cos e), 
(16a) 

P,,_I(COS 0) = cos OP" - [sin (O)ln]p~I)(cos 0). (I6b) 

Expanding F and G in powers of a, Mott gets 

F = Fo + aFt + "', (I7a) 

G = Go + aG l + "', (17b) 

and, corresponding to the lowest approximation, 

0'(0) = ~~:~: csc
4 (~)( 1 - ~)( 1 - ~~ sin

2 ~), (l8a) 

and 

( 
v2

.? 0 V • e) X 1 - - sm- - + "Ira - sm -
c2 2 c 2' 

(I8b) 

corresponding to the next higher approximation. 

2.2 Relativistic Wavefunction 

Here we consider not the phase shifts, but the 
wavefunctions themselves. Mott finds for the G's: 

1 -ikr '" ,),/2 

G-n- 1 = "2 r;(2p,~ + 1) (2krY" 

_---'-'I f"-,C,,,-;Pn. + 1 + i'Y) I _ 
X ( . )1/2['( . ')1/2J P. - t'Y - ~ n - ~'Y 

X {(Pn - i'Y)¢(p" + i'Y, 2Pn + 1, 2il.,"T) 

where Un = Pn+!' The ¢'s are confluent hypergeometric 
functions of the first kind. 

It is convenient to deviate from the procedure 
of previous authors by splitting off the term that 
in the limit c -+ co yields the nonrelativistic wave­
function. For this purpose we use the identities 

¢(Pn + i,)" 2p" + 1, 2ikr) 

= ¢(Pn + 1 + i'Y, 2p" + 1, 2ikr) 

- [2ikr/(2Pn + 1)]¢(Pn + 1 + i,)" 2Pn + 2, 2ikr) , (20a) 

and 

¢(u" + i'Y, 2un + 1, 2ikr) 

= [(Un + i'Y) /( - Un + i'Y)]¢(un + 1 + iI', 2un + 1, 2ikr) 

+ [20',/(-0'" + i'Y)]¢(O'" + if', 20'", 2ikr). (20b) 

We shall use the following integral representation 
for the ¢'S7; 

( ) fCc) x 112-./2 
¢ a, C,:r = ex 

r(c - a) 

X f' e-trclz-a-1I2Jc-1[2(xt)1I2] dt, (21) 

Re C > Re a> 0, 

Re x> o. 
Substituting these expressions into (lla), one finds 

(exchanging the order of summation and inte­
gration), 

'" 
X I: {nJ2P"+12(tl)e- i

;,-P" - (n + l)Jzu,.-lc- i l'U"1 
n-O 

'" 
X I: (-ltP,,(cos O){[(n + 1 - O'n) + C'Y' - 1')] 

n~O 

- (n - i"/')¢(Pn + 1 + iI', 2Pn + 1, 2ikr)j, (19a) X e-
1u

"J2U ,,(n + 1) 

and + [(p" - n) + i('Y' - 'Y)]ne-i"'P'JzPnl. (22) 

1 -ikr ."1'/2 

Gn = '2 r;(20'~ + 1) (2kr)"" 

Ir(O'n + 1 + i'Y) I 
X -(0'-n----'-i'Y~)172(n + 1 + i'Y')f7'i 

X {(O'n - i'Y)¢(O'n + if', 20'" + 1, 2ikr) 

+ en + 1 + i'Y')¢(O'n + 1 + iI', 20'" + 1, 2ikr»), (19b) 
6 J. H. Bartlett and R. E. Watson, Pmc. Am. Acad. 

Arts & Sci. 74, 53 (1940). 

In the nonrelativistic limit (I" -+ "I, Pn -+ n, etc.) 
the second term vanishes. 

3. CALCULATION OF CROSS SECTION 

3.1 Expansion of the Scattered Field in Powers of 
the Fine Structure Constant 

For convenience, each component of the wave is 

7 It will be assumed that 2ikr = lim (E + 2ikr). 
.~o 
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split into three parts. If a factor of k is dropped to 
obtain a unit incident wave, the expressions for exp [2i?1n] = 

the direct wave are 

./,(2) _ 
'f'3 -

X [n exp (-i7rPn)J2Pn +1 

- (n + I)J2un - 1 exp ( -i7rlTn)] dt, 

( 
, ) ikr 

"I - "I ~ eq/2 

2 kr 

XL" e-'r i1
- ' ~ (-I)"P,,(cos 8) 

(23a) 

X [exp (-i7rPn)nJ2Pn + (n + 1)J2un exp (-i7r<Tn)] dt, 
(23b) 

1/Ii3 ) = i e:
kr 

eq/2 f"" e-'r i1
-

1 f (-I)"P,,(cos 8) 
2 kr 0 n~O 

X {n(Pn - n)J2Pn exp (-i7rPn) 

- (n + 1)[0-" - (n + 1)]J2un exp (-i7run)} dt. (23c) 

These equations are obtained directly from (22). 
The results for 1/14 can be written down by inspection 
of (lla), (lIb), and (23). One sees that the changes 
to be made are as follows: 

(a) Replace P" (cos 8) by p~l) (cos 8) and mul­
tiply by e'<I>. 

(b) Drop the factors nand n + 1, multiplying 
the Bessel functions. 

(c) Reverse the sign of the factor containing 
J 2u. or J 2an-I' 

The use of three separate wavefunctions is equiva­
lent to writing (13a) and (13b) as 

[2 ' ] rep. + 1 - i'Y) 
exp ~?1-n-l = r(Pn + 1 + i'Y) 

X exp [i7r(n - Pn)][l + (L- :-' + ~-:- ~n], (24a) 
p" - ~'Y Pn - t'Y 

X [1 + i "I - ~' + n + I -: <Tn]. 
<Tn - ~'Y <Tn - t'Y 

(24b) 

The Bessel functions in Eqs. (23a, b, c) and in 
the corresponding ones for 1/14 are now expanded in 
a power series about the integers and we obtain, 
for example, 

X {nCam javm
) (J2V+ 1e- i 1rV) [Pn - n]m 

+ (n + 1)(am jaVm)(J2.+te-iU)[Pn - n - lr}. (25) 

We consider that the factors such as [Pn - n] are 
expanded in powers of cl and that the t integration 
is carried out in all terms except the coefficient of 
the lowest power of ci in each of the three parts 
of 1/13 and of 1/14' Taking the asymptotic form for 
large kr of the resulting expressions, with the ex­
ception of the six terms (the first three terms of 
1/13 and 1/14 mentioned above), we find the form of 
the incident and scattered wave far from the nucleus. 
This procedure is, of course, entirely equivalent to 
a phase-shift expansion and as such is really the 
same method as that employed by previous 
authors2.s with this exception. The first terms in 
1/1~3) and 1/Ii4) contain sums of Bessel functions that 
are exactly summable. No further expansion of 
these terms (in powers of "I) is necessary. The first 
term of an expansion of these terms in powers of 
"I agrees with that of McKinley and Feshbach. S 

[Cf. their Eq. (6)ff with our Eq. (28c).] 
We shall first concentrate on these six terms in­

volved and denote them generally as 1/1'. One gets 

eikre1r 'Y/2j'" e-'ri'Y f (2n + 1)J2n+l[2u]P,,(cos 8) dt 
o u 

- ikr ''1/21'" -'t-''YJ (2 . ~) dt - e e 0 e 0 u sm 2 ' (26a) 

-H'Y - 'Y')e"112 e
k

ikr 1 f {nJ2n - (n + 1)J2n+1}p.(cos 8)e-'r' 1 -
1 dt 

. roo 

(26b) 

8 W. A. McKinley and H. Feshbach, Phys. Rev. 74, 1759 (1948). 
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1/t~(a) = 2~r eQ/2ci i'" e-tri'Y-{ ~ J 2nPn(COS 0) + ~ J 2n+1Pn(COS 0) ] dt 

= - 2~r e"'Y /2ci i'" e-tri'Y-{ JO( 2u sin ~) - J o(2U)] dt, (26c) 

1/t~(I) = 0, (26d) 

1/t~(2) = !(-y - 'Y')e"'Y/2 e
I

ikr 
e'</> 1'" i: (J2n + J 2n+1)P2)(cos 0)e-'ri'Y-1 dt 

ler 0 0 

+l( ') "'1'/2 e
ikr 

.</> 1'" '1 J (2 . '1) -tt-''Y-1 dt 
"2 "I - "I e kr e 0 cos 2 1 U sm 2 e 

-cot (0/2)e i</>1/ti2) , (26e) 

1/t~(a) = 2~r e"'Y /2ci i'" e-tri'Y-{ ~ J2n:~1) - ~ :++1
1 
P~I) ]e-tri'Y-1 dt 

_ei</> 2~r tan ~ e"'Y 12a? lo'" e-tri'Y-{ Jo( 2u sin~) - J o(2u) ] dt 

+tan (0 /2) 1/t~a) ei</>. (26f) 

In order to obtain the asymptotic behavior of 
these terms for large u we use 

10'" e-'t" 'J;, [2(xt/ 12] dt z::' e-zx'" exp [i71-(iJ'/2 - a)] 

+ r(iJ' /2 + 1 + a') ( )-"'-1 (27) 
r(iJ' /2 - a') x , 

and thus obtain, denoting the asymptotic form of 1/t; 
by u;, In sin2 (0/2) by A, and r(l - i'Y)/r(l + i'Y) 
by M(l): 

u~(I) = exp [ikz - i In 2kr sin2 (0/2)] 

+ "I M(l) l'YA exp [ikr + i'Y In 2kr] (28) 
2k sin2 (0/2) e r ,a 

U~(2) = -M(l) "I ;k'Y' eO, exp [ikr +r i'Y In 2kr] , (28b) 

u,(a) = a
2 

M(l) ei'Y). - 1 exp [i'Y In 2kr + ikrJ , (28c) 
a 4k "I r 

ut(l) = 0, 

-cot (0/2)ei</>u~(2), 

+tan (0/2)e'</>u~(a) • 

(28d) 

(28e) 

(28f) 

The coefficients of (exp [ikr + h In 2kr])/r in 
(28a, b, c, e, f) shall be denoted by If, I~, a21~, 
g~, a2g~, respectively. In applying (27) to obtain the 
behavior for large kr for 1/t~(S) and 1/t~(a), one should 
consider J o(2u sin 0/2) - J o(2u) as 

lim J .(2u sin 0/2) - J • (2u) . 

In order to evaluate the remaining terms in 

the scattered waves, one applies (27) to (25), 
term by term, and in this manner obtains series 
of Lengendre functions with coefficients involving 
r(n + 1 - i'Y)/r(n + 1 + i'Y). For v "-' c, "I is 
approximately equal to a and therefore terms of 
order a

2'Y2, say, must be lumped with terms of 
order a'. If we denote the resulting series of Legendre 
functions occurring in Us as S, and those in U 4 as 
T, we have, for example, 

2kua = {2k!1 + 2k!2 + 2ka2!a 

+ !7I"a2 SI + !a2'Y[2Sa - 2i7l"S2] 

+ !a
2
('Y - 'Y'hSs + i7l"Sg] 

- !a2'Y2[271"S4 + 4iS5] 

+ !a2 ('Y - 'Y'h[2iSll - 2iSlO 

- 7I"S6 + 271"SI3 + 2iS12] 

+ 1a4[371"S6 + i7l"2 S7 - 2iSll ] + ... } 
X exp [ikr + i'Y In 2kr]/r. (29) 

The result for U4 is analogous with the f's replaced 
by the g's and the So's by the T;'s. The T;'s can 
be written down by inspection from the S;'s by a 
method equivalent to that by which 1/t4 was obtained 
from o/a. The series S, and their sums as obtained 
by contour integration are tabulated in Table I. 

The meanings of the symbols in Table I are as 
follows: 

1/tr(n + 1) = (dr /dnr) In r(n + 1), 

£2 = - { In (1 + ~) d~/~, 



                                                                                                                                    

RELATIVISTIC COULOMB SCATTERING 397 

TABLE 1. Tabulation of sums. 

Part 1. Sums appearing in cross section. 

00 00 

81 = L: P n + L: P n = csc (0/2) - 1 
1 0 
00 00 

82 = L: Pnif;l(n + 1) + L: Pnif;l(n + 1) = if;(1)[csc (0/2) - 1] - csc (0/2)[In (1 + csc 0/2) - In 4] 
1 0 
00 00 

8a = L: Pnif;2(n + 1) + L: Pnif;2(n + 1) = csc (0/2)[11"2/4 - £2(m) + £2( -m)] - 11"2/6 
1 0 

00 00 

8 4 = L: Pnif;i(n + 1) + L: Pnif;2(n + 1) = csc (0/2) {[if;(1) + In (1 + csc 0/2) - In 4Y 
1 0 

+ £2(m) + £2(-m) - 11"2/12} - if;i(1) 

~ P n ~ P n (1) ( 2 sin 0/2 ) 
~ ~2 + ~ (n + V = 2£2 1 + sin 0/2 - 4£2 1 + sin 0/2 

- 4£2!(1 + sin 0/2) - 6£2(1 - sin 0/2) - In
2 

(1 + sin 0/2) 

+ 4 In 2 In (1 + sin 0/2) - 2 In2 2 - 2 In sin2 0/2 In (1 + sin 0/2) + 411"2/3 + 88 

~ P n ~ P n 1 a
2 

1I"V P ( ) I (2 /) 2/ 
"-' -2 - "-' ( + 1)2 = -2- -a 2 -.- • -cos 0 = £2 cos 0 2 - 11" 6 
1 non v SIn 1I"V .-0 
00 P 00 

L: -.!' - L: = -2 In (1 + sin 0/2) 
1 n 0 

~ Pnif;](n + 1) _ ~ Pnif;l(n + 1) = -4 0 ( 2 sin 0/2 ) _ 2 (1 _ . 0/2) 
f' n ~ n + 1 "'-'2 1 + sin 0/2 £2 sm 

- £2(m) - £2( - m) - 2if;(1) In (1 + sin 0/2) + In 4 In (1 + sin 0/2) 

2. ( 2 sin 0/2) 1 + sin 0/2 2 
- In (1 + sm 0/2) + 2 In 1 + sin 0/2 In (1 _ sin 0/2)2 + 711" /12 

Part II. Sums not appearing in cross section. 

85 = if; (1) { csc ~ [~2 + £2( - m) - £2(m) ] - ~2} + 2 f (1 ~n y~y.j-
X In /2( V)2(y - cos O)[(y - cos O)C + sin 0 + V] I d 

(sin 0 - V)y sin O[(y - cos O)C + sin OV'-] y, 

yI- = [(y - cos ol + sin2 0]112, C = tan (~ - ~) 
~ Pn + ~ Pn a 1I"V P ( ) / . 2 ' "-' - "-' -- = -- -.- • -cos 0 = -In sm 0/2 
1 non + 1 all SIn 1I"V .-0 

~ Pnif;l(n + 1) _ ~ P"if;I(n + 1) = 0 ( 2 0/2) _ 11"2 _ 11"21 (1 + . 0/2)2 f' n 2 ~ (n + 1)2 "'-'2 cos 6 6 n sm 

_ 1-if; (1) -11 
£2(x)[1 + (1/x)] + In

2 
Ixl/2 d 

2 3 0 [(x _ cos 0)2 + sin2 Oy/2 x 

f P; + f P n 
3 = -~ a: ~P.(-cos 0) I = l' In Ivlln 11 - v cos

2 

0/21 dv 
1 n 0 (n + 1) 3! av sm 1I"V .-0 0 v(1 - v) 

~ P"if;2(n + 1) ~ Pny,.2(n + 1) 11"2. 2 11"2 f' n - ~ (n + 1) = - if;a(l) - 6" In sm 0/2 - "6 In (1 + cos 0/2) 

_1 1 
l/x[1I"2/6 - £2(1 - x)] + In

2 
Ixl/2 + £2(1 - x) d 

o [(x - cos 0)2 + sin2 OJ 1
/

2 x 
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Table I (contimted) 

Part III. Sums appearing in p.,. 

ro 00 

In general, if 8 i = L f(n)P"Ccos 0) ± L g(n)p,,(cos 0), 

then 

TI = -tan 0/281 

Tz = -tan 0/282 + csc 089 

T3 = -tan 0/283 - esc 08s 

1 0 

T4 = -tan 0/284 - CSC 086 + 2 csc 0813 
Ts = -tan 0/285 + esc 0(812 - 810 + 8 11) 

Ta = -tan 0/286 

T7 = -tan 0/287 

Ts = cot 0/288 

Tg = cot 0/289 

TlO = cot 0/2810 - CSC 0811 

Til = -tan 0/2811 

T'2 = cot 0/2812 + CSC 08ll 

TI3 = cot 0/2813 - esc 086 

the dilogarithm of Euler, PvC - cos 0) 
- exp(-O jIm vi) for 0 < 0 < 1C' sIn 1C'V 

m (1 - sin 0/2)/(1 + sin 0/2). (30) 11m pI_co 

3.2 The Evaluation of the Series 
and thus the integration over the circular arcs yields 
a vanishing small contribution to the integral. Use 

As an example of the evaluation of the 8/s by is made of the following integral representations: 
contour integration, consider 8a• 

'" 
8 3 = L Vt2(n + l)P,.(cos 0) 

(2)1/2 rm 
PvC -x) =;;: rev + l)r( -v) 

1 

'" + L Vt2(n + l)P,,(cos 0) 

x {'" cosh [(v + !)t] dt 
10 (cosh t - X)1/2 , 

o 
-1 < Re (v) < 0, 

'" L Vtz(n + 1)p n( cos e) - Vt2(1) , (31) +x not on the real axis between 1 and ro; (33a) 
o 

'" L Vt2(n + l)P,,(cos 0) f
OO -t -to e -e 

Vtl(Z) = Vtl(l) + 0 1 _ e-t dt, Re (z) > 0, (33b) 

o 
dVtl(Z) i oo te- I

• 
Vt2(Z) = -d- = 1 t dt, Re (z) > 0, 

Z 0 - e (33c) 

in the evaluation of the sums. Since 
- 11+'" P -1/2+i< ./. (1 + . ) d 
- - '/'2 "2 ~T T. 2 _<X> cosh 1C'T 

(32) [00 cos (tT) dt 

In this last step we have distorted the path C, 
as indicated in Fig. 1, so that the path of integration 
lies:parallel to the imaginary v axis after adding the 
circular arcs at infinity. The behavior of the inte­
grand on these circular arcs is dominated by 

---T-t'·'f~J·"----c -=====.\:~ · " ... 
/ 

" 

FIG. 1. The con­
tour C. 

10 (cosh t - cos eyl2 

11+ 00 

e
itr 

dt 
= 2' _<0 (cosh t - cos e)l/'i , (34) 

00 viz 
~ Vt2(n + 1)P,,(cos 0) = 41C' 

xf+'" f+oo f'" ~e-V2e-ir~eitT d~ dt dT. 
-00 -00 0 (1 - e-E)(cosh t - cos 0)1/2 

(35) 

Interchanging the order of integration and applying 
the Fourier integral theorem, we have, using the 
~uccessive substitutions 



                                                                                                                                    

RELATIVISTIC COULOMB SCATTERING 399 

e~~ - cos 8 
tan v = . 8 

Sill 
(

V - 8) t = tan -4- : 

L 1/;2(n + l)P n 

o 

V2100 d~ ~e~U2 
= 2 0 (cosh ~ - cos 8)1/"(1 - e~<) 

_ esc 8/2 ('an ( .. -8)/4 I(t - c)(t - d)1 dt 
- 2 10 In (t + c)(t + d) t' (36) 

where c = tan 8/2 + sec 8/2, d = tan 8/2 - sec 8/2. 
Finally, 

S3 = csc 8/2[ ~ - £2C ~ :~~ :j~) 

+ £2 ( 1 - sin 8/2)J 
1 + sin 8/2 

2 
7r 

6 

For some further details, see Appendix 1. 
An interesting example is 

S8 = i Pn(cos 8) - i Pn(cosJ!.L 
I n2 

0 (n + 1)2 

+i f P,(-cos 8) 211 + 1 d 
2 c sin 7r1l 112(11 + 1)2 II 

(37) 

_ ~ r P,( -~os 8) ~ dll. (38) 
27r 1 r II Sill 7r1l 

Here r is a circular path about the origin of radius 
less than !, say, taken in a clockwise direction. 
When the integral over C is distorted to run parallel 
to the imaginary II axis, it will have the factor 

f +OO T cosh itT dT = 0 
-00 (i + t) . 

Evaluating the residue at zero of t.he integral along 
r, one has 

1 a
2 

( 7r1l ) I S8 = -;--2 P,(-cos 8) -.-
2 all sm 7r1l ,~O 

2 

= £2(COS
2 8/2) - ~ . (39) 

3.3 The Cross Section 

Since the leading term in the scattered wave 
amplitude is proportional to a (for a ~ '1'), knowl­
edge of the wavefunction to terms in a4 permits 
the calculation of the differential cross section up 
to those terms proportional to a 5

• However, we are 
actually interested in the ratio of this cross section 
to the Rutherford cross section, 

uR(8) = -~--4e sin4 8/2 

= 4(ZeZ (1 - rl) csc· 8/2 [Relativistic]. (40) 
mv 

The ratio U(8)/UR' commonly denoted by R, will 
contain terms proportional to a n

-
1 if the wave­

function and cross section are known to order an 
and aD+t, respectively. We shall indicate the order 
in a to which the wavefunction has been calculated 
by a Roman numeral subscript. Then 

RI = 1 - i32sin2 8/2, 

RII - RI = 7rai3S1 sin2 8/2 

(41a) 

= 7rai3 sin 8/2(1 - sin 8/2), (41b) 

RIll - Rrr = (a2X2/2) sin2 8/2 

2 2 i32 
+ 7r ~ S: sin4 8/2 sec2 8/2 

+ (a2i32/4)X2 sin4 8/2 sec2 8/2 

+ a
2 sin2 8/2(2S3 + fS8), (41e) 

R rv - RIll = (7rai3/4)Q'XSI sec2 8/2 sin4 8/2 

- (7ra 3 /2!3)Q 2S1 sin2 8/2 

+ 7r(a3i3/2)SI(2S3 + S8) sec2 8/2 sin4 8/2 

+ 7r(a 3i3/2)(Sg - 2S2)X sin4 8/2 sec2 8/2 

+ (7ra 3/!3)[2S2 - i3 2Sg] sin2 8/2 

+ 27ra3i3S13 sin2 8/2 - (27ra3/!3)S4 sin2 8/2 

- (7ra3i3/4) sin2 8/2S6 • (41d) 

Here, Q = 21/;(1) - X, Q' = 41/;(1) - X, 1/;(1) = - E 
(the Euler-Mascheroni constant 0.5772) and again 
X = In sin2 8/2. It should be noted that the series 
S5, S7, SIO, Su, and SI2 contained in the scattering 
amplitude are not present in the cross section, for 
when U3U~ is calculated these series appear in terms 
of the form 

Xia4S[1I1(I)e i
')'A - 1I1(l)e- i

')'A] 

'" 2"/a4 S[(X - 21/;(1)] + (42) 

Since this calculation is exact in the limit a ~ 0, 
a/"Y ~ 1, consistency requires that such terms be 
dropped unless the wavefunction (cross section) is 
known to order a5 (a6

). 

Using these formulas [Eqs. (43a-d)], we have 
calculated the cross section for scattering of electrons 
by lead (Z = 82, a = 0.598) at a bombarding energy 
of 10 MeV (i3 = 0.9976) to order a5. The results 
are plotted in Fig. 2 along with t.he exact results of 
Doggett and Spencer.9 

9 J. A. Doggett and L. V. Spencer, Phys. Rev. 103, 1597 
(1956). 
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FIG. 2. Ratio of relativistic cross section to Rutherford 
scattering cross section. 

4. THE GENERAL FORM OF THE 
COEFFICmNT OF an 

In general, we can write that 

U(O, a, -y) = 2iku3(O, a, fJ) 
co 0:1 r 13 

= f.; ~ ~!~! Ur.sCO, 0, 0), 

where 

il+SU I 
Ur.S(O, 0, 0) = -r--S (0, a, -y) • 

iJa iJ-y '1-0. a-O 

(43) 

(44) 

With an increasing amount of analytic labor, one 
can find the U r. S by expansion of the phase shifts 
as sums of the form 

., 

L: f(n)[PnCcos 0) ± Pn- 1(cos 0)]. 
n-l 

This, of course, was the starting point of the work 
described in the previous sections. By means of 
contour integration, these sums were expressed in 
the form of integrals, some of which can be evaluated 
in closed form. We shall now consider an alternative 
approach which bypasses the intermediate step, 
namely, expansion of the phase shift in powers of 
Ci and -y. The total scattering amplitude will first 

be expressed as a contour integral in the complex 
v plane; integral representations will be used for 
certain functions and then derivatives with respect 
to a and -y will be taken. The result will be that the 
Ur.S(O, 0, 0) can be expressed in terms of two-di­
mensional real integrals. By a simple change in 
variables these integrals can be as integrals over a 
square in a two-dimensional space. 

4.1 Nonrelativistic Scattering by an 
Inverse-Cube-Law Force 

Before considering the relativistic Coulomb prob­
lem itself, we shall digress briefly to discuss a related 
problem. It is well known that the differential 
equation describing the motion of a relativistic 
classical particle moving in a Coulomb field differs 
from that of a nonrelativistic particle, in that the 
first contains an apparent force term proportional 
to 1/r3

• It would appear reasonable to expect then 
that there will be mathematical similarities in the 
scattering amplitude for a particle obeying the non­
relativistic SchrOdinger equation moving in an 
inverse-cube-law force field and the scattering ampli­
tude dealt with in this paper. 

Formally one has the following differential 
equation: 

-W/2m)\12x - (-yl/r2)x = (h2/2m)k2x, 

with the boundary conditions 

X finite at the origin, 
ikr 

X ~ eik
• + h(O)~. 

r_CO r 

The solution is given bylO 

X = L: (2n + l)Pn(cos O)e-i~·j •• (kr), 

where 

0" = -!7r{ [en + !)2 - 7]2]1/2 - (n + !)}, 

(45) 

(46) 

(47) 

j.n = C7r/2kr) 1 
12 J'.+1 (spherical Bessel function), 

7]2 = 87r2m-Y/h2 < 1 
(condition of regularity at origin), 

Un = [en + !)2 - 7]2r/2 - !. 
The scattering amplitude h(O 7]) is given by 

1 ., . 
h(O, 7]) = 2 'k L: (2n + l)Pn(cos O)[e-2'~' - 1], (48) 

~ n-O 

and we write 

10 Reference 3, pp. 40-41. 
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'" 
H(8,71) == 2ikh(8, 71) = L: (2n + l)P,,(cos 8) 

n=O 

= .i r (2v + 1)P.( - cos 8) 
2 JD sin 7rV 

The contour D is shown in Fig. 3; the branch line 
of the function [(v + t)2 - '1)2]1/2, extending from 
v + t = -71 to v + t = +'1) is indicated by the 
double line. We now distort the path D so that it 
lies parallel to the imaginary v axis; the contribution 
from the infinite semicircle (indicated by the dotted 
line) vanishes because the integrand approaches 
e-llm.IB X [l/(v + t)] for large v. Using the variable 
p., defined by v + t = Jl., and indicating the new 
path as r, we have 

Vz r f+'" Jl.e~t 
H(8, 'I) = 27ri Jr _00 ~ (cosh t - cos 8)1/2 

X (
i7rr [K(u, 71)]" dt dJl.; (50) 
r. 

K(Jl., 71) == (p.2 - 712
)1/2 - Jl.. 

Now consider the function 

-'T} 'T} ------__ J 

~~~=3_i~1/~2--.~--------------- 1t+1/~ 

-----07 
I 

/ 
/ 

r / 
./ 

FIG. 3. The contour D. 

m 

X L: (i7rY D(2m, r)Jl. -2",+r+l. (55) 
r-l 

For the integration over p. we have, if 2m -
r - 1 < 0, 

f +~t -2m+r+l d e Jl. p. 
r 

27ri d2
,.,-r-2 +~t I 

= (2 _ _ 2) I d 2 .. r 2 e H(t) m r . Jl. ,,~o 

27ri( + tlm
-

r
-

2 

= (2m - r - 2)! H(t), (56a) 

( ) ~ (illY [( 2 2)112 ]r g Jl., 71 = L..J -, Jl. - 71 - Jl. . 
r-l r. (51) where H(t) is the unit step function. If 2m -

We desire, in general, the 2mth derivative of this 
function with respect to 71 evaluated at 71 = O. With 
the aid of the integral representation 

r - 1 = 0, then 

(56b) 

[(l - '1)2)112 - P.r We can unify the results as follows: 

= r{3' 10'" X -le-~~ J r (f3X) dX; {3 == i71, (52) Ir e+l'tp.-P dp. = 27ri Op(t) , (57) 

one finds 

1 iim I 

(2m)! iJ'I)2m g(p., 71)I~=o 
1 i-. (-i7r)'(2m - r - I)! -2 .. +r 

= ., L..J ( 1) I( ,\ '22m r p. m. r-l r - . m - rJ. 
m 

- L D(2m, r)p.-z",+rC+i7rY, 
r-l 

where 

(-1)'(2m - r - I)! 
D(2m, r) == I( _ 1)'( _ )122 .. -." m.r . m r. 

Further, then, 

(53) 

(54) 

where 

l' 1u. JU' 1"'-' = " . . O(Up ) dup dUp - 1 ••• dUz du!, 
o 0 0 1> fold 0 

If p is negative, the corresponding derivative of the 
o function is indicated. Finally, then, 
iJ2m 

iJ'I)2 H(8, 71) = Vz 

X f+oo f D(2m, r)OZm r-l(t)( V2i7r)" dt. 
.", r-l (cosh t - cos 8) (58) 

For the lowest-order term one finds 
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RI~ 

FIG. 4. The contour used in evaluation of F and G. 

1 a2H(8, 7) 

2! ------a:;;-2 -

_ V2 D(2, 1) (i7r) __ = -i7r_ (59) 
- ~ 2(1 - cos 0)1/2 2 sin 0/2 ' 

and then, to lowest order, 

4k2(J"(O) = 7r2rN4 sin2 (e/2). (60) 

4.2 The General Terms in Mott's Expansion 

In treating the relativistic Coulomb scattering 
amplitude a procedure similar to that in Sec. 4.1 
can be carried out; the exact form of the answer 
can be in several equivalent forms depending on the 
manner one uses to separate the phase shifts into 
distinct terms. We shall discuss the formulation used 
by Mott [cf. Eqs. (14) and (15)] for two reasons: 
First, it can be more easily compared with previous 
work, and second, the notation is more compact. 

The functions F(8) and G(8) were defined in 
Eqs. (14a, b, c). These may be expressed as 

F(e) = ~ t (-l)"nCn[Pn(COS e) -Pn_l(cos 0)], (61a) 

G(O) =ii; (-I)VCn[Pn(Cose)+Pn_l(cosO)], (6Ib) 

Denoting by C~ the function 

-e- i1Tn [r(n - i,},)/r(n + 1 + i,},)], 
and setting 

one can rewrite (6Ia, b) as 

z 
F(e) = Fo + Fl = Fo + 2' 

X L (1- )"nDn[Pn(COS e) - Pn_l(cos 0)], 
n=l 

i 
G(O) = Go + G1 = Go + 2' 

X L (-I)"n2Dn[p,,(cos e) - P,,_I(COS 0)], 
n=l 

where 

and 

(62) 

(63a) 

(63b) 

(64) 

(65) 

It should be noted here that Mott drops the sum 

1 a> 

- 2ik ~ (2n + I)Pn(cos 8), 

which is zero if e differs from zero. Mott obtains 
the values of Fo and Go by demanding that, in the 
limit C --t <Xl, 0: --t 0, '}' finite, the scattering ampli­
tude reduces to the nonrelativistic value. Inasmuch 
as C" --tn_a> -lin, and, as thus n2Cn --t"_,,, -n, 
this sum must be retained in a formal evaluation 
of Go. 

We shall now find the formal expansion of the 
functions F(8, 0:, '}') and G(e, 0:, '}') in powers of 0: 

and '}'. For convenience, we consider that 0: and 
'}' == 0:1{3 are independent variables and that the 
formal limit 0: --t 0 need not imply '}' --t O. First, 
however, we need to express P" in terms of Pn - I 

according to the relation 

Pn(cos e) = (cos 8 + si~ 8 ;e)P"-l(COS e). (66) 

This is done in order that we can use the inte­
gral representation (33a) despite a change of 
the path of integration. The use of this new con­
tour is desirable because we wish to avoid both 
the branch line of (v2 

- 0:
2
)1/2 and the poles of 

r(v - i'}')/r(v + 1 + i,},); this contour is shown 
in Fig. 4. Again, the double line indicates a branch 
cut, this time of the function (l _ 0:

2
)1/2. 

Proceeding as in the previous section, we find that 

1 a2m
pl I 

2m! ao:z- a~O 

= V2 i 1 t D(2m, r) 
4 reI + 2i,},) r~1 r! 

X L+'" 1'" (i7r + ~r exp [2i'}' In (2 sinh U2) - t12] 

d~ dt 
X T(O, t - ~) ( sh t e)I/2 , co - cos 

and that 

_I_l.1m+IFI I 
2m! l! aa:2m a,}, a:~o.'Y~O 

= V2 i(2i) I i: ± D(2m, r)E(s) 
4 r~1 .~o r!s!(l- s)! 

X [:'" fo'" (i7r + ~re-'/2[ln (2 sinh U2)]l-o 

X T(O t _ t) d~ dt 
, <; (cosh t - cos 0)1/2 

(67) 

(68) 

In these last two equations, the operator T is given 
by 
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T = [02m-r-J(t - ~)(1 - cos 8) 

- 02m-r(t - ~) sin 8 (aja8)], 

and the numbers E(s) by 

d
3 

1 l E(s) - ----=--
dx' r(1 + x) ,,~o' 

The first few E's are 

(69) 
'Ve may further generalize these as follows: 

(70) 
[' d~ 

£Z.k(Z) = -1
0 

[In (1 - ~)t f ' 

E(O) = 1, E(l) -1P(1) = E Integration by parts allows us to express £n,k(Z) as 

(the Euler constant 0.577 ... ), lnz z 
E(2) = E2 _ 7r2/6. £.,,,(z) = In Z£n-l.k(Z) = 2! £.-2,< 

These numbers can be generated by means of the 
following recursion relation: 

d' 1 I 
E(s + 1) = dx' - r(I + x) lP(I + x) 1.-0 

~ (;)E(S - p)lPp+J(I). (71) 

The 1fip's are the polygamma functions. 
In obtaining the results for the derivatives of Fh 

use was made of the following integral representation: 

rep - i'Y) 
rep + 1 + i'Y) r(I ~ 2i'Y)B(p - i'Y, 1 + 2i'Y) 

r(1 ~ 2i'Y) 10''' e-«·-i1')(1 - e-<)2i"f d~, (72) 

Re P > 0 for'Y real. 

Similar expressions for G1 can be obtained simply 
by replacing T by 

- [02m-r-2(t - ~)(1 + cos 8) 

+ 02",-r-l(t - ~) sin 8(aja8)]. (73) 

In general, the form of the integrals will be 

f oo r' e- tI2(t - ~)k'(i7r - ~)k'(ln ~/~inh U2)k' d~ dt 
o 10 (cosh t - cos 8) 

(those involving the delta function and its derivative 
will be simpler). The substitutions y = e-~, x = e- t 

bring this into the form 

t fl [In y/xY'[ln y]k'[ln (1 - y)/ vY]k. dy d 
10 z [(x cos 8)2 + sin2 oyl2 y X. 

As previously noted, the dilogarithm £2 is de-
fined as 

1
z 

d~ - In (1 - ~)-. 
o ~ 

(74) 

A generalization, called the n logarithm, may be de­
fined by 

+ ... + (-Ir-I (~nn-2 ~! £2.k(Z) 

(-lr-J JZ [In ~r'2[ln (1 - ~W 
+ (n - 2)! 0 ~ d~. 

Finally then, the angular dependence of the cor­
rection terms to the scattered wave will be given 
by integrals of the form 

(75) 

5. CONCLUSIONS 

In this paper we have used the techniques of 
contour integration to obtain, in closed form, the 
differential cross section for relativistic Coulomb 
scattering up to the fifth order in the fine structure 
constant. The functional form of the relativistic 
corrections to the scattering amplitude corresponding 
to an arbitrary order of the fine structure constant 
were found in terms of two-dimensional integrals 
involving elementary transcendental functions. 
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APPENDIX 

Evaluation of the Sums 

In the evaluation of the sums listed in Table I, 
integrals of the form 

1'" e-'12f(t) 
dt f(t) real 

o (cosh t - cos fJ)'/2 , (A') 

arise. The substitution x = e- t casts the integrals 
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into the form For example, 

11 I( -In x) dx 
o [(x - cos 8)2 + sin2 8]172' (B/) il~'1 = d~ F(-", " + 1, 1 + cos 8) I 

a" .-0 a" 2 ,-0 

Inasmuch as the integrals (A') are real, one must 
take care that no imaginary terms appear in the 
final result. In particular, the logarithm occurring 
in the integrals (E') must be considered to be 
In Ixl. The dilogarithm and n-Iogarithm functions 
mentioned in the text require similar treatment. 
The following functional relations were used in 
simplifying the final results: 

£2(X) + £2(I/x) = *1r2 - ! In2 Ixl; 

£2(X) + £2(1 - x) = l1r2 -In Ixlln 11 - xl. 

These relations differ from those usually quoted, 
for the reasons stated. 

The derivatives of the Legendre functions with 
respect to order were calculated by differentiating 
the appropriate hypergeometric series term by term. 

x f r(r +" + ,1~r(r - II) (cos2 8/2rJ I 
r-I (r.) .-0 

= -2 f r(r + l1 r (r) 
r-I (r!) 

X [lfl(r + 1) - lfl(r)](cos2 8/2r 

= -2 t (cos
2 

!/2/ = -2£icos2 8/2). 
r 

Here we have used the functional relation 

lfl(r + 1) = lfl(r) + l/r. 

The corresponding relationship for the polygamma 
functions follow by differentiation with respect to r. 
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Binary Kernel Formulation of a Heisenberg Model of Ferromagnetism *t 
NEWTON 1. GREENBERG 
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An ideal Heisenberg model of a ferromagnet for spin i is studied by considering the model in terms 
of a spin-deviation lattice gas. Utilizing the general methods of Yang and Lee, a binary kernel function 
is obtained in terms of which the thermodynamic properties of the lattice gas can be completely 
expressed. As an example, Dyson's results are rigorously obtained. 

I. INTRODUCTION 

IT has been demonstrated by Van Kranendonk l that 
the Heisenberg model for spin ! is equivalent 

to a lattice gas of interacting spin deviations. 
However, Van Kranendonk has not shown sufficient 
care in the handling of the interaction between 
spin deviations and is thus led to erroneous results. 
In this paper, a rigorous treatment of Van Kranen­
donk's spin-deviation lattice gas is given using the 
general methods introduced by Yang and Lee2 in 
their treatment of a hard core Bose gas. 

In Secs. II and III, the basic properties of the 
spin-deviation lattice gas are outlined and the 
appropriate binary kernel is obtained. In Sec. IV, 
we show-by obtaining Dyson's result3

•
4 for the 

spontaneous magnetization-how the binary kernel 
formulation, and thus Van Kranendonk's lattice 
gas, can be utilized at low temperature. We thus 
have further confirmation that Dyson's handling 
of his kinematical interaction, which is not physically 
obvious for spin !, is indeed correct. In the last 
section we briefly discuss the possibility of using 
the binary kernel formulation at higher temperatures. 

At this point, we should like to mention the work 
of Morita6 whose approach is somewhat similar 
to ours. Using Van Kranendonk's lattice gas, 
Morita obtains Dyson's low-temperature results; 
but, unlike the present paper, Morita assumes in 
essence, part of Dyson's results.6 

* This research was supported at the University of Mary­
land by the U. S. Air Force through the Air Force Office 
of Scientific Researcht..,and at the Bartol Research Foundation 
by the U. S. Atomic .t<;nergy Commission. 

t This paper is based in part on a dissertation presented 
to the Uruversity of Maryland in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy. 

I J. Van Kranendonk, Physica 21,81,749, and 925 (1955). 
2 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); 

ibid. 117,22 (1960). 
• F. J. Dyson, Phys. Rev. 102, 1212 (1956). 
4 F. J. Dyson, Phys. Rev. 102, 1230 (1956). 
& T. Morita, Progr. Theoret. Phys. (Kyoto) 20, 614 

(1958); ibid., p. 728. 
S Morita's work is based on the solution of a two-particle 

wave equation. However, for E = 2cJ, his hard-core potential 
in the spin-! wave equation is ineffective. As E = 2cJ cor­
responds to Dyson's improper states (see Sec. 2 of reference 
4), it is clear that Morita has omitted Dyson's kinematical 
interaction. 

II. SPIN DEVIATION LATTICE GAS 

The model used in this work is a cubic crystal 
with periodic boundary conditions. The crystal 
structure is taken to be simple cubic. To each 
lattice site r l , a spin vector Sr. of absolute value! 
is attached. Each spin vector has an intrinsic 
magnetic moment fJ, and an external magnetic field 
H m is applied in the positive z direction. 

The Hamiltonian for this system, assuming an 
isotropic exchange interaction between nearest­
neighbor spin vectors, is 

X = -J .L: (Sr.·Sr.+A - 2fJHm"l;IS:J, (1) 
rl.A 

where the r l summation is performed over all N 
lattice vectors and the lattice vector 4. is summed 
over all "10 nearest neighbor lattice vectors. 

For spin !, the spin vectors satisfy the relation 

[Sr~, Sr:J = 2 Or •. r,S:. = Or. ,r,(l - 2Sr~Sr:), (2) 

where 

Sr7 = S:. ± S: •. 

By combining (2) with (1), the Hamiltonian 
operator may be expressed as 

X = Eo + J .L: (Sr~Sr~ - S;.+I>.Sr: 
r1tA 

r. 

where 

Eo = -tJN"Io - J.LHmN. (4) 

The ground state of the system, 10), is defined by 
the condition 

Sr~ 10) = 0, (5) 

for any lattice vector r l • That is, in the ground 
state, all the spin vectors are in the" up" direction, 
and from (3) and (5) we find the ground-state 
energy to be simply Eo. 

A complete orthogonal set of states for the system 

405 
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are the states which have a fixed number of spins 
in the" down" direction and these spin deviations 
are at specified sites. The states with one spin 
deviation are of the form 

(6) 

where r, is anyone of the N lattice vectors. In 
general, the states with n spin deviations arp. of 
the form 

where r, '" rn are any n lattice vectors. From (2) 
we find that (7) vanishes when any two lattice 
vectors are the same and thus, for n spin deviations 
there are only (~) independent states. 

Using (2) and (3), we see that the operator 
Lr. Sr~Sr~ corresponds to the total number of spin 
deviations and is a constant of the motion. Van 
Kranendonk has shown' that, when discussing the 
thermodynamic properties of the spin deviation 
lattice gas, the term 2jJ.H m Lr. Sr~ Sr~ m (3) is 
equivalent to introducing the fugacity J, 

J = exp (- 2(3jJ.H m) , (8) 

into the system. Taking advantage of this equi­
valence, we define an effective Hamiltonian for the 
lattice gas as 

H = 3C - 2jJ.H", I: Sr~Sr~ - Eo 

J I: (Sr~Sr~ - S;.+ASr~ 
rl'4. 

(9) 

It is now a simple matter to define the wave 
equation for the lattice gas. Let the symmetric 
function ipz(r) be the probability amplitude of 
finding n spin deviations at lattice sites r = (r, ... rn) 
while in the lth eigenstate of (9), the corresponding 
eigenvalue being E z• The wave equation is then 
given by 

I: (n!)-'ipl(r')(r IHI r') = E1ipl(r) (10) 
r' 

if (r I r) ~ 0, and 

(11) 

if (r I r) = O. 
For the case n = 1, the solutions of (10) are the 

usual Bloch spin waves. That is, one obtains 

ip ... .(r) = N-! exp (iJ.., 'r,), 

E').. = J I: (1 - cos J.., • 4), (12) 
A 

where the wave vector J.., can assume any of the 
N values in the first Brillouin zone of the reciprocal 
lattice. 

Van Kranendonk" and subsequently Morita5
, 

have shown that for spin t, the interaction between 
spin deviations is a two-body interaction. However, 
this interaction contains a "hard-core repUlsive 
potential" and one has to be careful. In this work, 
we avoid the difficulties inherent in this singular 
interaction by defining a binary kernel function. 

In their work, Yang and Lee2 obtain the binary 
kernel from the exact two-particle solutions of the 
wave equation. Unfortunately, we have not been 
able to find a convenient set of solutions for (10) 
and (11) when n = 2.7 However, in the next section 
we show that the two-particle solutions of (10) and 
(11) are not necessary for determining the binary 
kernel of the lattice gas. 

III. THE BINARY KERNEL 

In order to determine the binary kernel function 
B, we require the function U, as given in Yang and 
Lee. 2 In the coordinate representation, the U, 
function is found to be 

U,(ri; r,) = I: ip ... .crDip').~(r,) exp (-(3E ... J 
l.. 

= N-' 2: exp [iJ.., ·(ri - r,) - (3E .... ], (13) 
.... 

where (3 = (kT)-" and use is made of (12). It is 
clear that U, can also be expressed as 

(14) 

The binary kernel function is obtained by de­
composing Yang and Lee's W~ function2 into a sum 
of terms containing only the functions U, and B. 
In the coordinate representation, we find W~ to be 
given by 

W~(rir~; r,r2) 

= 2 I: ipi(rir~)ip~(r,r2) exp (- (3E;) , (15) . 
where {ipi} is a complete orthonormal set of two­
particle eigenfunctions of (10) and (11) with eigen­
values (E i I. It is clear that W~ can also be written as 

W~(rir~;r,r2) = <rir~1 exp (-(3H) Ir,r2). (16) 

For the purpose of decomposing (16) we see that 
the states {\r,r2)} and the operators Sr~' Sr~ are 
rather inconvenient. That is, to decompose (16) in 
the manner of Yang and Lee, we must separate 

7 In Sec. III, we discuss the two-particle functions Dyson 
obtains in reference 3. 
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the free-particle motion in W~ from the interaction; 
however, as seen by the commutation relations (2), 
the operators Sr~' Sr: and thus the states Ilrlrz)}' 
implicitly contain a portion of the interaction 
(the" hard core" part). For this reason, we introduce 
the Holstein and Primakoff "spin deviation" 
operators8 as modified by Kubo.9 These operators 
ar~' ar, satisfy the usual relations for boson operators 

[ar " ar,] = [ar~, ar~] = 0, 

ar, 10) = 0, (17) 

and under certain conditions are related to Sr~' Sr: by 

(rir~ lexp (-{3Ho) I rlr2) = UI(ri;rl)UI(r~;r2) 

+ UI(ri;r2)UI(r~;rl)' (23) 

where one recognizes the right hand side of (23) 
as being equivalent to W~ for noninteracting 
particles. 

The function U2(rir~; r lr2), as given by Yang and 
Lee, is one half the difference of (19) and (23). 
That is, 

U2(rir~;rlr2) = t(rir~ I[exp (-{3H2) 

(24) 

S:, = [1 - a~,arJar" 

S;, = a~.[1 - at,ar.]. 

Finally, the binary kernel B is obtained by inserting 
(18) the operator (Ho + aja{3 + o({3)) immediately 

preceding the square bracket in (24). We thus obtain 

The conditions under which (18) applies are (i) 
the operator Sr: acts only on states which contain 
at most two spin deviations, and (ii) the operator 
Sr~ acts only on states which contain at most one 
spin deviation. From (7) and (9) we see that these 
conditions are in fact satisfied in (16). 

Substituting (18) into (16), and eliminating 
several terms which obviously vanish, we obtain 

W';(rir~; rlrz) 

where 
6 

H2 = L hi' ha = - J L ar~ar~ar,ar., 
1=1 r, ,.Q. 

hi = J L ar~ar" h4 = J L ar~ar~ar.ar,+4.' 
Tl, .Q. rL.4 

h2 = -J L a~'+4.ar,' hs = J L at'+4.ar~ar,ar" 
rl.4 T1..4 

h6 = -J L a~,+4.ar~ar.+4.ar.. (20) 
rl.4 

and the states Ilrlr2)} are the two-particle states 
generated by the operators of (17), i.e. IIrlrz) = 
ar~ar~ 10)}. 

It is not difficult to convince oneself that, in the 
space of one- and two-particle states generated by 
the operators of (17), 

(21) 

behaves like the free-particle Hamiltonian operator. 
That is, one can readily show that 

(r{ lexp (-{3Ho) I rl) = UI(ri;rl), (22) 

and 

8 T. Holstein and H. Primakoff, Phys. Rev. 58,1098 (1940). 
• R. Kubo, Phys. Rev. 87, 568 (1952). 

B(riri;rlr2) = -! (rir~ I{~ hi exp (-{3H2) 

- (2J.yot
l
ha[h l + hz + o({3)]}1 rlr2)' (25) 

We can simplify (25) by observing that the rela­
tions 

H2h3 = 0; 

(4J.yO)-I(~ hi)(hl + ha) = h4 + h6' 

exp ( - (3H 2) = (4J.yo) -I {(hi + ha) 

X exp [-(3(H2 - h3 - h4)] - ha}, (26) 

are valid in the two-particle space generated by the 
operators of (17). Combining (25) and (26) we obtain 

B(rir~; rlr2) = -t(rir~ IIH'* exp [-(3(Ho + H')] 

- (2J.yo) -I o({3)ha } I r l r 2) , (27) 

where 

H' = hs + h6 • (28) 

At this point we wish to emphasize that (27) was 
derived without any approximation and that the 
entire interaction between two spin deviations is 
found in (27). 

Let us now examine the binary kernel function 
one obtains if Dyson's two-particle functions are 
used in place of the two-particle wavefunctions of 
(10) and (11). Dyson's two-particle functions are 
solutions of (10) and, in place of (11), the following 
equation: 

L I(ri IHI rl)or".r, + (ri IHI r2 /or".r.l 
r 

(2fJ) 
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In Dyson's work, the scattering solutions of (10) 
and (29) in the low-energy limit are the only 
ones obtained. It is a simple matter, though, to 
determine the binary kernel when (10) and (29) are 
used with (15). One obtains 

B D(fif~; f 1f 2) 

= -!(fif~ IH' exp [-,8(Ho + H')]I f1fz) , (30) 

where we note that H' has the same form as Dyson's 
dynamical interaction operator. By replacing (11) 
with (29), we have, in Dyson's terminology, .neg­
lected the kinematical interaction, and (27) differs 
from (30) in that the former contains the kine­
matical interaction while the latter does not. 
To be more precise, the last term in (27) comes 
about as a direct consequence of (11) and the 
difference between (30), and the first term of (27)10 
is due to the fact that though the dynamical inter­
action is the only contributing part of the spin 
deviation interaction in an ideal scattering process, 11 

the binary kernel is not restricted to just these 
processes. . 

In the next section we show how the bmary 
kernel of (27) can be used to calculate the low­
temperature spontaneous magnetization and we find 
that the results are in agreement with those of Dyson. 

IV. LOW-TEMPERATURE SPONTANEOUS 
MAGNETIZATION 

Yang and Lee have developed2 general cluster 
expansions for the thermodynamic properties of 
a system of interacting particles in terms of the 
binary kernel function. In this section we give an 
example of how these general relations can be 
applied to the spin-deviation lattice gas. That is, 
we will use the cluster expansion for the density 
of particles, given by Yang and Lee, to determine 
the spontaneous magnetization of the spin deviation 
system in the asymptotic limit of zero temperature. 

The magnetization M is related to the density 
of spin deviations p byl 

M = JL(l - 2p). (31) 

From Yang and Lee we find p to be given by 

p = 1: [m(:l..I) - 1] + 1: 'Y~(:l..1:l..2; :1..1:1..2) 
l.1 J.l.1.2 

X [m(:l..I)]2m(:l..2) + ... , (32) 

when the fugacity 3 is unity; 3 = 1 for the spin­
deviation lattice gas corresponds to a vanishing 

10 The operator H' is non-Hermitian. 
11 See Sec. 3 of reference 3. 

external field. The function m(:l..I), readily obtained 
from the Fourier transform of (13), is given by 

m(:l..I) = [1 - exp ( - ,8E")..) r 1 . (33) 

The remaining functions in (32), 'Y! with n assuming 
integer values greater than one, may be expressed 
in terms of U1 and B, i.e. (13) and (27). 

Since (32) contains an infinite number of terms, 
one must have some means of selecting the dominant 
terms in (32) for any practical calculation. The 
selection method we employ follows naturally from 
the fact that at low temperature the spin-deviation 
lattice gas is quite dilute. That is, at low temperature 
one expects the" importance" of the different terms 
in (32) to be inversely proportional to the number 
of binary kernel factors. 

We now present the results of calculating p in 
ascending powers of the binary kernel function 
(27).12 The zeroth-order contribution comes from 
those terms of (32) which do not contain any 
'Y! factor; this contribution, when evaluated in the 
usual low-temperature manner, is 

rW83
/

2 + i7l"r(!)85
/
2 + -lh2rG)87

/
2 + 0(8912

), (34) 

where 8 = (471"J,8)-1 and r(n) is the Riemann zeta 
function. (34) is readily recognized as the usual 
result for noninteracting spin deviations. The 
contribution due to those terms which contain 
only one binary kernel factor is found to be 

2{1 - rWr(!)}83 
- {371"Qr(i)rm 

+ rm rCi) + [rW n 84 + O( 89
/

2
) , (35) 

where Q is the numerical coefficient Dyson defines 
for a simple cubic lattice and spin V The next 
contribution, due to terms containing two binary 
kernel factors, is 

2{rWrm - 1}8
3 + {rmr(i) 

+ [rW Y} 84 + O( 8912
). (36) 

Finally, the terms containing three binary kernel 
factors are found to be of order 89

/
2 and thus, all 

higher-order terms are taken to be at least of order 
89

/
2

• Therefore from (35) and (36) we find the total 
contribution to (32) due to spin-deviation inter­
actions to be 

-371"Qr(i)r(!)84 + 0(89
/

2
). (37) 

If (34) and (37) are combined with (31), we 
obtain precisely Dyson's result for the spontaneous 

12 For detailed calculations, see N. I. Greenberg, Tech. 
Rept. No. 222(1961), Physics Dept., University of Maryland, 
College Park, Maryland. 
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magnetization. Thus, we have established that 
Van Kranendonk's approach is useful in the low­
temperature region and have added further con­
firmation to Dyson's conclusion that his kinematical 
interaction may be neglected in the asymptotic 
limit of zero temperature. 

In evaluating (32) we have used the binary 
kernel as given in (27). Since our results are the same 
as Dyson's, it is clear that if we were to use (30) 
for the binary kernel, our results would still be the 
same. In fact it is obvious that once the kinematical 
interaction is eliminated from Dyson's cluster 
expansion [Eq. (156) of reference 3], one obtains 
essentially the binary kernel formulation with (30) 
as the binary kernel. 

V. HIGHER TEMPERATURES 

SO far, we have discussed the application of the 
binary kernel formulation in the low-temperature 

region only. At higher temperatures, though the 
concept of a spin-deviation gas is certainly well 
defined, we have thus far been unable to utilize 
the binary kernel formulation. Our difficulty lies 
in the fact that the binary kernel as given in (27) is 
in a very awkward form for evaluating cluster 
expansion terms which contain a large number of 
binary kernel factors-such terms being obviously 
important at higher temperature. We feel, therefore, 
that a simpler form of the binary kernel must be 
obtained if this formulation is to be useful at 
higher temperatures. 
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A new method is presented for obtaining irreversible equations describing the approach to equili­
brium in systems of many particles. The basic idea is the removal of secular terms arising in a perturba­
tion expansion by the technique used in nonlinear mechanics. The irreversible equations then appear 
as consistency conditions for the existence of a well behaved expansion. The method relies heavily on 
the existence of the natural fine-scale mixing occurring in the dynamics. 

I. INTRODUCTION 

I N recent years much work has been devoted to 
the problem of obtaining equations which 

describe the approach to thermal equilibrium in 
systems of many particles. In particular, the most 
comprehensive of the theories presented in the past 
are those of Bogoliubovl and of Prigogine and 
Balescu2

•
3

•
4 which yield kinetic equations like the 

Boltzmann or Fokker-Planck equations. The start­
ing point of the Bogoliubov theory is the hierarchy 
of equations describing the time evolution of the 
one-, two-, ... 8-particle distribution functions, 
which is obtained from the Liouville equation by 
integration over part of the complete phase space. 
To obtain kinetic equations from the hierarchy, 
Bogoliubov assumes that after a time which is 
longer than the duration of a single collision, but 
short compared to the time between successive 
collisions, the s-particle distributions become func­
tionals of the one-particle distribution. In the present 
method, we show that this relation follows from the 
dynamics for a certain class of initial conditions 
and need not be assumed. The Prigogine-Balescu 
theory, on the other hand, works directly with the 
Liouville equation whose solution is obtained by 
using diagrams and their topological properties. 
Their theory is intrinsically more complicated than 
the present one since it deals with much more 
information than is contained in the first few 
equations of the hierarchy. 

The method presented here is similar in spirit to 
that of reference 1. Its basis lies in two perturbation 

* This work was jointly sponsored by the U. S. Atomic 
Energy Commission under Contract AT(30-1)-1238 and by 
the Office of Naval Research under Contract NONR 
1858(25)NR-098-038. 

1 N. Bogoliubov, Problems of a Dynamical Theory in 
Statistical Physics, Moscow, 1946, (Translated by E. K. Gora 
AFCRC-TR-59-235). ' 

2 I. Pz1go~ne and R. Balescu, Physica 25, 281, (1959). 
a I. Pr~gog~ne and R. Balescu, Physica 25, 302, (1959). 
4 I. PrIgogme and R. Balescu, Physica 26, 145, (1960). 

procedures performed on the equations of the 
hierarchy. The first is common to all of these 
methods and consists of passing to the limit of 
large volume and many particles, keeping the 
spatial density in the system finite. The second 
expansion is peculiar to the characteristics of the 
interparticle potential and magnitude of the particle 
density, and will thus differ depending on whether 
the forces are long range, short range, etc. The latter 
perturbation expansion is not a straightforward 
one however, in that we demand that it hold for 
long times. Indeed, Bogoliubov has already demon­
stratedl that a naive expansion in a small parameter 
performed on the equations of the hierarchy will 
lead to terms growing like t in the time development 
of the system. This clearly indicates that a more 
sophisticated expansion must be used which avoids 
such secular behavior. Techniques for constructing 
expansions which avoid secular behavior in non­
linear periodic systems have been developed by 
van der PolS and Bogoliubov and Krylov.6 The 
method presented here is a generalization of this 
technique to systems which are not periodic in the 
lowest order of the expansion. 

It will be seen that a characteristic feature of 
the method is its reliance on the fine scale or phase 
mixing which occurs naturally when we follow the 
dynamical development of the system. It is es­
sentially this characteristic which allows information 
to be lost and thus yield irreversible behavior. 
A further point which has been emphasized by 
Sandri7 and investigated in detail by him, is the 
description of the time development of systems 
which do not exhibit a kinetic regime after suffi­
ciently long times. Thus it is possible to specify 

6 A. Andronow and S. Chaikin, Theory of Oscillations 
(Moscow, 1937). ' 

6 N. Krylov and N. Bogoliubov, Introduction to Nonlinear 
Mechanics, (Kiev, 1937). 

7 G. Sandri, (to be published). 
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exactly, the class of initial conditions for which a 
Boltzmann or Fokker-Planck equation results. 

To demonstrate the theory, we apply it in this 
paper to a classical, weakly coupled system. We 
treat both the spatially homogeneous and in­
homogeneous cases. 

n. THE EQUATIONS OF THE HIERARCHY 

We assume a classical system of N identical 
particles of mass m in a volume V interacting with 
a two-body potential energy cpo The Liouville 
equation governing the time evolution of the 
N -particle distribution function t N(X l .•• XN, 

VI, •• , VN, t) is 

and 

(8) 

At this point it is convenient to crudely estimate 
the orders of magnitude of the various terms in 
Eqs. (5) and (6). We therefore define the following 
quantities: 

fo - the range of the potential; 
(cp) - the characteristic strength of the potential; 
Vav - the average particle velocity; 
L - the characteristic scale length for macroscopic 

spatial gradients; 
T - a characteristic time scale for the system. 

[ {L + t Vi.~ - ~ '£ acp(X, - XJ .~J/N = O. With these definitions and the use of Eq. (8), 
at ,-I aXi m ir'i-I ax. aVi the ratios of the terms in Eq. (5) are found to be 

(1) 
We assume the normalization 

f l.y IIdxidvi = 1, 
'~ =1 

(2) 

and that 'N is symmetric under interchange of the 
coordinates and velocities of any two particles. 
Reduced distribution functions are introduced 1 

by defining 

,,(xl ••• X,, VI, •.• V" t) = v· f itt dx, dVi tN' (3) 

Upon integrating out (N - 8) variables in Eq. (1) 
and using Eq. (3), we obtain 

[~ + t Vi·~ - 1 t acpfXi - Xi) .--~Jf, 
at i-I ax, m ",j_1 ax.. aV i 

8 = 1,2, ... N. (4) 

This is the familiar B-B-G-K-Y hierarchy. 
In the following, we pay particular attention 

to the equations for 8 = 1 and 2. These are 

~b + V • atl = eN - 1) f dx dv acp .i2~ (5) 
at lax, m l' 2 2 ax, aVI ' 

and 

[:t + VI ·a~ + V z• a:2 - 1~ :: • a!, - ! :~ ·a~]tz 
= (N - 2) J dX3 dV 3 [ a¢ • al3 + B¢ .i2bJ. (6) 

m V aXl aVl aX2 aV2 

In addition, Eqs. (2) and (3) imply the relations 

1 = 1\ J dx, dVI I" (7) 

1 : VavT : (N _ l)(r~)(~02~_)(vavT), 
L 1 mtav fo 

(9) 

while Eq. (6) yields 

1 : VavT : VavT : ( (cp~ )(VavT) : 
fo L mVav ro 

eN - 2)(r~)(_(CP~_)(VavT). (10) 
J mVav To 

In obtaining Eq. (10), we introduced the relative 
and center-of-mass coordinates to give the estimates 
of the second and third terms. It is easily seen that 
the order-of-magnitude estimates involved in the 
8-particle equation follow closely from those of 
Eq. (10). 

We now specify in detail the first of the expansions 
we use. We let N and V ~ co in such a way that 
the average density N IV = n remains finite. 
If we introduce a formal dimensionless expansion 
parameter "A « 1, we assume that N = l/"A and 
f~/V '" A. In this limit, the interaction of the 
system with the boundaries becomes negligible and, 
in addition, the Poincare recurrence time of the 
system tends to infinity. This latter result is a 
useful product of the expansion since it is necessary 
that the recurrence time be longer than any time 
of interest before we can hope to find meaningful 
time-irreversible equations. In what follows we 
will be performing expansions in another small 
parameter, say, e. In order that the characteristic 
times associated with the expansion in E not be 
comparable with the recurrence time, we will 
assume that A « E. Below, we will use only the 
equations which result from the lowest order of the 
expansion in A. 
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Mter the lowest-order equations in the A expansion 
have been obtained, we introduce for convenience 
the two-, three-, ... 8-particle correlation functions 
by means of the definitions 

!2(1, 2) = ft(1)ft(2) + g(l, 2), 

la(1, 2, 3) = Ml)M2)M3) 

+ !1(1)g(2, 3) + ft(2)g(1, 3), 

(11) 

+ ft(3)g(l, 2) + h(l, 2, 3), etc. (12) 

Inserting these definitions in Eqs. (5) and (6), after 
the A expansion has been carried out, we obtain 

af1 + af1 at V 1• aX1 

= E:. J dx dv acf>. [~ill I (2) + ~J (13) m 2 2 aX
1 

aV1 1 av1 ' 

= .l acf> • aMi) ft(2) + .l acf> • aM2) ft(1) 
m aX1 aV1 m aX2 avz 

+ ~ J dX3 dVa {:!.[ a~~~) g(2, 3) 

+ ag(i~ 11(3) + ah(l, 2, 3)J 
aV1 aV1 

+ acf> • [a/1 (2) (1 3) 
aX2 aV2 g , 

+ ag(l, 2) ft(3) + ah(l, 2.tl2J}. (14) 
aV2 aV2 

III. THE WEAK-COUPLING CASE 

In order to proceed with the problem, we must 
introduce further expansions which decouple the 
equations of the hierarchy. Among the physical 
situations to which the equations apply, are three 
standard cases which have been extensively in­
vestigated in the past. These are dilute systems 
with short-range forces, systems with weak coupling, 
and systems with long-range forces (plasmas). 
We will examine here only the weak coupling case 
since it is analytically the simplest, yet demonstrates 
all the features of the theory. 

We introduce a formal dimensionless expansion 
parameter E « 1 which measures the strength 
of the potential, i.e. we choose E ,..,., (cf»/mv!v. For 
this case we can choose nr~ ro..J 1 since we have in 
mind a moderately dense gas. There are three 
characteristic time scales for the system in this 

limit: To ro..J rolvav, the duration of a collision; 
T1 ro..J Tol i, the time between successive collisions; 
and T2 ro..J Llvav, the time for an average particle 
to cross the macroscopic spatial gradient. To 
further simplify the discussion we assume, in this 
section, that roiL ro..J E4. This requirement means 
that the system is so close to spatial homogeneity 
that departures will be noticeable in fourth order 
only. We here carry the expansion through third 
order. Physically, we expect the system to behave 
quite differently on these various time scales. 
The expansion exploits this in that it forces the 
time scales to be widely disparate as far as the 
ordering in E is concerned. 

As Bogoliubov1 pointed out, if we simply expand 
the distribution and correlation functions as a 
power series in E, 

11 = tiO) + Etil) + lli 2
) + .. . 

g = g(O) + EgO) + ig(2) + ... , etc., (15) 

and solve the equations of the hierarchy, secular 
terms will result. If T ro..J To, then the last term in 
Eq. (9) and the last two terms in Eq. (10) are of 
order E compared with the first terms. However, 
when T ro..J T1, the former terms become of order II E 

and grow without bound. Thus, while a simple 
power series will describe the evolution of the 
system for a time comparable to the duration of a 
collision, the expansion will fail for times comparable 
to the mean free time between collisions. 

Weare therefore forced to adopt a different 
expansion; one which is similar to the procedures5

•
6 

used in nonlinear mechanics. These methods usually 
allow a more general time variation in the perturba­
tion functions, but since the domain of definition 
of the functions has been enlarged, a new condition 
is needed to determine the additional functional 
dependence. This condition is merely the require­
ment that no secular behavior exist. 

The method used here then assumes that a 
solution of the equations can be found in the form 

/1 = liO)(t, H, io, ... ) + Ef?)(t, ET, io, ... ), (16) 

with similar expressions holding for g, h, etc. The 
variables T, 0, etc. are related to the original variable 
t by the simple equations 

dT/dt = 1, dO/dt = 1, etc. (17) 

However, the freedom in the solutions of Eqs. (17) 
afforded by the choice of initial conditions, allows 
us to treat t, ~T, io, etc. as independent variables in 
equations such as (16). 
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We now proceed to expand Eqs. (13) and (14) 
in E with the above prescription. To lowest order 
we obtain 

(18) 

which simply ensures that f;O) does not vary on 
the short time scale, allowing, however, for a 
slower variation with time. Eq. (14) to lowest 
order in E becomes 

ag(O) ag(O) 
at + (VI - v2)'ax = o. (19) 

In obtaining this equation, we have introduced 
x = Xl - X2, the relative coordinate, and have 
neglected the dependence of g(O) on Xl + X2 , the 
center-of-mass coordinate, because of our assumption 
that ToiL "-'e4

• Similarly, the equation for 8 = 3 
yields 

ah (0) ah (0) ah (0) at + (VI - v2)'ax + (vJ - v3)'af = 0, (20) 

where ~ = Xl - X3• 

In this section we assume that the initial values 
of all the correlations are zero. Therefore, the only 
correlations that appear will arise due to interactions. 
Actually this is a quite reasonable set of initial 
conditions to choose by virtue of Grad's theorem.s 

This restriction is removed in the next section 
however. 

We therefore obtain from Eqs. (19) and (20), 

g(O) = 0, 

h(O) = O. 

We now proceed to next order and find 

af?) + aNO)(eT) 
at a(eT) 

(21) 

(22) 

= !!:.. f dx dv act>. afiO) f(O)(v ) (23) 
m 2 2 aXl aVl 1 2 

for the one-particle distribution. The integral on 
the right-hand side of Eq. (23) vanishes by symmetry 
and we can thus integrate the left-hand side trivially. 
For times which are bounded by Tie where T is 
some finite time, we find 

f;1)(t) = fi1)(O) + t afiO)(eT)la(eT). (24) 

Thus, in order to prevent secular behavior we 
must choose 

af;O)(eT)la(eT) = 0, 
which also yields 

aj;l)(t)lat = O. 

8 H. Grad, J. Chern. Phys. 33, 1342, (1960). 

(25) 

(26) 

We therefore proceed to next order and obtain 

Ofi 2
) at;l)(eT) atiO)(e2 0) 

at + aCE;) + a(e2j) 

= !!:.. f dx" dV2 act> .[af~ f;0)(2) 
m ax[ av[ 

+ atiO)(l) fi1l(2) + ag~J, (27) 
aVl aVl 

while Eq. (14) expanded to first order gives 

ag(l) ag([) 
at + (v[ - V2)'~ 

= .1 act>. (-~ _ -'L)tiO) (1)liO) (2). (28) 
max av[ avz 

Equation (28) is trivially solved by taking Fourier 
and Laplace transforms to give 

gO)(k, VI, Vz , p) 

_ .1 ct>(k)ik'(~ - ~)fiO)(1)fiO)(2) 
- m pip + ~k·(v[ - v2)] 

(29) 

where we have set the initial value of the correlation 
equal to zero. Upon taking Fourier and Laplace 
transforms of Eq. (27) we get 

j (2)( ) = li
2
)(t = 0) _ .1 [ati1)(eT) + atiO)(/o)J 

1 p P p2 a(eT) a(e20) 

+ (2'IIY n f dk ct>(k)ilc.-'L 
m aV l 

X f dV
2 

g(l)( -k'pVt, v2 , p) . (30) 

We now investigate the behavior of fi 2
) as t ~ <Xl 

(again bounded by Tie). We see that upon inverting 
the Laplace transform, the double pole at p = 0 
will yield secular behavior. Thus we must use the 
freedom in fi l

) and fiO) to eliminate such terms. 
We use the theorem that 

lim pf(p) = lim f(t) 
p-o t_co 

to obtain the asymptotic behavior and the con­
sistency requirement 

ati')(ET) + atiO)(e28) 

aCE;) a(/8) 

= (211/ !!:.. J dk ct>(k)ik'-'L 
m aV I 

X J dV2 lim pg(l)( -k, V" v2 , p). (31) 
"...0 
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We now use the Dirac relation 

lim _1_. =!:. =Fi7f'o(x) (32) 
.~O x ± '1,€ x 

to obtain 

Mi1)(er) + afiO)VO) = 87f'4!!:." J dk i¢(kW·..i. J dvz 
a(ET) aCE 0) m- aV I 

X {k.[afi
O

) f,(2) - ~h f,(l)]o(k'VI - k.vz)} 
fJv I aV 2 

crfi(l), f~(2)]. (33) 

The argument now is similar to that following 
Eq. (23) and yields 

(34) 

and 

afiO)(ie)jfJ(/e) == C[f~(l), f~(2)1. (35) 

Equation (35) is, of course, the standard irreversible 
Fokker-Planck equation and can easily be manipu­
lated into the various forms in which it appears in 
the literature. We see that it appears essentially 
as a consistency condition for the existence of a 
well behaved expansion on the short time scale. 

The rest of Eq. (27) then gives the behavior of 
fi Z

) on the short time scale: 

af;2) = i(27f')3!!:.2 J dk I¢(k) 12 k.-f-
fJt m UVI 

X J dV2 k'(a!1 - a!Jf~f~ 

[
1 _ eik'(V,-v,lt p 

X -f:cv-;-=--VT - ~(V~-V2) 

i7f'o(k'v1 - k·v2) J. (36) 

As t increases, the terms in the integrand in Eq. (36) 
tend to cancel. Thus fJfi Z

) jat tends asymptotically 
to zero. 

To show that the method continues easily to 
higher order, we have obtained the next-order 
correction terms for the kinetic equation. This 
result is given in the Appendix. 

IV. THE EFFECT OF INITIAL CORRELATIONS 

In the previous section we assumed that all the 
initial correlations vanished and only correlations 
due to interactions arose. We now relax this condition 
and examine the effects of correlations which are 
externally imposed by choosing nonzero initial 
conditions. It is clear physically that if the initial 

conditions lead to correlations which extend over 
all space or have too many particles in certain 
velocity groups, thermal equilibrium will not be 
attained. Mathematically speaking, for initial cor­
relations which are singular enough, the time to 
reach equilibrium can be made longer than all 
orders in E. 

To lowest order we obtain Eqs. (18), (19), and 
(20) again which are trivial to solve by Fourier 
and Laplace transforms. With initial correlations, 
Eq. (23) is replaced by 

a.t;~ + atiO)(er) = n J dX
2 

dV
2 

a¢. fJg(O). (37) 
at a(Er) m fJx! av! 

Using transforms again, Eq. (37) becomes 

f(1)( ) _ f;o(v" t = 0) _ 1_ af;o'(er) 
! V1,p - P p2 a(eT) 

x J dv g(O)( -k, VI, Vz, t = 0) . (38) 
2 p[p _ ~k'(VI - vz)J 

It is easy to see from Eq. (38) that if the initial 
correlation has a delta-function behavior in k space, 
corresponding to a correlation with infinite range, 
the integral term will contribute a double pole in p 
space and therefore exhibit secular behavior. We 
therefore must assume that the initial correlation is 
limited to a finite spatial range. To investigate the 
asymptotic value of fill, we again multiply by p 
and take the limit as p -7 0 through positive values. 
It is clear that we must choose 

0, (39) 

and then get 

fill (VI , t -7 co) = fill(vl' t = 0) 

X f dV2 g(O)( -k, V" Vz, t = 0) 

X [k (p ) - i7f'o(k·v! - k.vz)J. 
• V, - Vz 

(40) 

In order that the integral on the right-hand side 
of Eq. (40) exist, g(Ol must be sufficiently well 
behaved when VI - V2 -7 O. A detailed analysis 
of this problem has been made by Sandri,7 

To understand the physical meaning of Eq. (40) 
we first note from Eq. (19) that an initial correlation 
will vary slowly with time if k. (VI - v2) "" o. 
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The phase mixing or fine scale mixing of gCO) that 
occurs due to the integration over V 2 then selects 
only the long-time persistent part of gCO" since the 
major contributions to the integral in Eq. (40) arise 
from the region where k· (VI - v2 ) ~ O. A discussion 
of the phenomenon of fine-scale mixing, including 
the asymptotic estimation of integrals similar to 
those appearing in Eq. (40) has been given by 
van Kampen9 in connection with the problem of 
Landau damping of plasma oscillations. The 
essential point is that information can be lost from 
the function gCO) due to the integration over V2 • 

We now proceed to the next order and obtain 

afi 2
) ajil) (fT) afiO) (fO) 

at + ---ac;;:;- + a(/o) 

where gCl) satisfies the equation 

agO) agCo'(fT) agO) at + a(fT) + (VI - vZ)'ax 

I2</>( a a) CO) 
- m ax' aV

I 
- av

2 
g 

= ~ acp. (~ _ ~)fCO) ( )fCO) ( ) 
a a a 1 VI 1 V2 m x VI V2 

and h CO) satisfies Eq. (20). 
Solving Eq. (42) by transforms we obtain 

gO) k, VI, V2 , t = 0) 
P + zk,(v i - V2) 

-c--___ 1__ agCo'(k, V" V2 , t = 0, fT) 
[p + zk,(v, - VZ)]2 a(fT) 

+ ~ ! cp(k)zk·(ajav, - a/avz)fiO)(l)fiO)(2) 
m p [p + tk,(v i - v2)] 

+ ~ 1 f dk' cp(k')tk' 
m p + zk,(v, - vz) 

(
a a)gCO)(k-k',V',V2,t=0) 

. av, - aV2 p + i(k - k') ,(vI - v2) 

+ (271Y !!:.- + k (1 ) f dV3 m pl' V, - V2 

9 X. G. Van Kampen, Physica 21,949, (1955). 

(41) 

(42) 

x {cp(khk.[atiO) gCO)(_k, VI, V2 , V3 , t = 0) 
av, p - zk·(v, - vz) 

_ aj,~ gCO)(k, V" V2 , t = O)J + f dk' cp(k')tk' 
aV2 p + tk·(v, - vJ 

[
a hCO)(k, -k', V" V2 , V3 , t = 0) 

. av, p + tk.(v, - v2) - ik' ·(v, - v3 ) 

+ _fL hCO)(k' + k, -k', V,, V2 , Va, t = 0) ]} (43) 
aV2 p + i(k' + k) ·(v, - V2) - tk' . (V, - V 3) • 

We now solve Eq. (41) in the form 

fi2) (v, , p) = fi 2)(v" t = 0) 

_ 1_ [a.ri')(fT) + afio'(f20)] 
p2 a(fT) a(f2 0) 

+ (271/ !!:.- f dk cp(k)tk.~ 
m av, 

X f d 
(1) (-k, v" Vz , p) 

V 2 g , 
P 

(44) 

and again investigate the asymptotic form of fi 2
) 

as t --7 00. We see that gCl) and h CO ) must have 
both a finite spatial range and regular behavior 
at the origin in relative velocity space for the 
phase mixing to take place. As far as the term in 
ag(O) (€T)/O(€T) is concerned, due to the presence 
of the additional free-particle propagator in the 
denominator, the regularity condition at the origin 
in velocity space must be strengthened. It is clear 
that we have the freedom in this expansion to choose 
og CO) (€T) I 0 (€T) to be zero and thus not require this 
added strengthening. Under these restrictions then, 
all the initial correlations phase mix at a sufficient 
rate so that Eq. (35), the Fokker-Planck equation, 
again results. 

We see therefore that the externally imposed 
correlations do not prevent the system from evolving 
through a kinetic stage as long as the information 
they contain can be lost through phase mixing. 
The loss of information will always occur when the 
physically reasonable limitations on the spatial 
range and velocity-space variation are imposed. 

V. THE EFFECT OF SPATIAL INHOMOGENEITIES 

The extension of the method outlined above to 
systems which are spatially inhomogeneous is 
straightforward. For illustration we will assume 
that roiL r-.J €2. This is equivalent to assuming 
that 11 is a function of iXI rather than e4

XI as was 
assumed above. Again, for illustrative purposes, 
we will assume that the initial correlations vanish. 
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We then find trivially that Eqs. (16)-(26) are 
unchanged but that Eq. (27) becomes 

-"f(2} -"fO }() -"f(O}e 20 2) af(O}e 20 2 ) 
_V_I_ + V 1 ET + v 1 E ,E Xl + V ._~~~ 
at a(ET) a(E20) 1 a(E 2XI) 

= ~ J dxz dV2 act> .[afi
I

} f~(2) 
m aXI aVI 

We see that the term arising from the spatial 
inhomogeneity contributes a new secular term and 
that the arguments following Eq. (27) are only 
trivially modified. The analogue of Eq. (35) then 
becomes 

f (O)( 20 2 ) af(O)( 20 2 ) 
~~~ + ._1 _E _~ = C(f(O)-tO) (46) a(io) VI a(ix

1
) . 1 11 , 

where C is the collision operator given in Eq. (35). 
The functions of fin) appearing in the collision 
operator are evaluated at e2xI • 

It is clear that in this method it is essential to 
order the ratio ro/ L in e so as to enable the secular 
terms to be identified and removed. 

VI. CONCLUSIONS 

We have given a perturbation theoretic solution 
of the few-particle equations of the B-B-G-K-Y 
hierarchy for a weak coupling interaction which 
exhibits irreversible behavior. Further, we have seen 
that the basic cause of irreversibility as it appears 
in this method lies in the fine-scale mixing which 
causes a loss of information contained in the cor­
relations arising from interactions. In addition, 
if initial correlations are imposed which are suitably 
restricted in both coordinate and velocity space, 
their effects will also disappear through fine-scale 
mixing. Thus it is possible to exactly specify the 
ensemble initially so that it will pass through a 
kinetic stage in its time evolution. 

It is clear that the particular expansion in E used 
here rules out a much wider class of dynamical 
solutions of the hierarchy which exhibit more 
complicated behavior in their time evolution. 
In particular, one might expect to find solutions 
which are non-Markoffian in nature and for which 
no clear cut distinction between the streaming and 
kinetic stages exists. 

We can now compare our results with those of 
Bogoliubov. He assumed that the s-body distribu­
tions became functionals of the one-body distribution 

after long times and in addition assumed the some­
what unphysical" streaming" boundary conditions. 
We see that the solution given here does not need 
the first assumption and replaces the second by a 
natural limitation on the initial correlations. In fact 
the first assumption need not necessarily be true 
in the presence of irregular initial correlations. 
Indeed, the method of solution used here corresponds 
so completely to Bogoliubov's philosophy that it is 
somewhat surprising that he did not use it. 

Comparing our results with those of Prigogine 
and Balescu, we remark that they only sum the 
most divergent diagrams or those which lead to 
secular behavior. We see from above, that in general 
it is true that isolating the secular terms leads 
to the kinetic equation. 

Finally, it should be mentioned that the method 
has been applied to the derivation of the Boltzmann 
equation, the Balescu-Lenard equationIO

•
ll

, to the 
master equation, and to systems with large spatial 
inhomogeneities. Papers embodying these results 
are in the course of preparation. 

APPENDIX 

We here present the calculations to next order 
in e for the case where the initial correlations vanish. 
From Section III we have 

ati1l(er) 
a(er) 

In addition, we have 

ati2
) afiO) (e2 0) n J act> ag(l) 

--at + a(E~ = m dX2 dV2 ax!' aV
I 

' 

_ 1.. act>.(~ _ ~)f(O)f(O) = O. 
m ax aVI av2 ! 1 

In the next order we get 

afi 3
) ati 2

) (ET) at;l}(lO) afiO) (la) 
--at + aCE;) + a(e2 0) + a (/u) 

n J act> ag(2) 
= - dx dv -.--. 

m 2 2 ax! av! 

10 R. Balescu, Phys. Fluids 3, 52, (1960). 
11 A. Lenard, Ann. Phys. 10, 390 (1960). 

(A1) 

(A2) 

(A3) 

(A4) 



                                                                                                                                    

THEORY OF IRREVERBIBLE PROCESSES 417 

Further, = ~ f dx dv [acp. afiO) (1) g(l)(2 3) 
m 3 3 aXl aVl ' 

+ acp. afiO) (2) (1)(1 3)J. 
aX

2 
aV

2 
g , (A5) 

It is easy to see that h (l) satisfies a free-streaming 
equation like Eq. (20), and therefore h (I) remains 
zero if initially zero. The solution of Eq. (A5) is 

(A6) 

When Eq. (A6) is substituted in (A4), secular terms again arise. We eliminate them in the way prescribed 
above which yields 

(A7) 
In addition we find 

afil)(E
2
0) + atiO)(E3U ) = (2 )3 n,!: J d J dk I,I.(k)I2k.~ 

a(E2 0) a(E3 u) 7r m2 V2 
'f' aVl 

X {k·(a!l - a!J[fil)(1)fiO)(2) + fiO)(1)fil)(2)]o(k·v t - k.V2)} 

+ (27r)37r n3 f dV2 J dk cp(k)k·a~ {k ~ k J dk' cp(k')cp(k - k') m ~.~ .~ 

X k'· (a!l - a!J Jek - k')· (a!t - a!JtiOlfio
l J o[(k - k')· (Vt - V2)] 

+ o(k·vl - k·v2) J dk' cp(k')cp(k - k')k' ·(a!l - a!J[ (k - k) ·(a!l - a!Jt;O)f;O) ] (k - k,t(Vt - V2)} 

- (27r)
fi
7r :3 f dV2 f dk Icp(k) 1

3
k. a!l 

(A8) 
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It is clear that the first term on the right-hand side that (A8) can only modify the rate of approach to 
of Eq. (A8) is the Fokker-Planck operator again. equilibrium by an amount of order E. 

Thus we may choose to lump til) in with tiD) and ACKNOWLEDGMENT 

regard the rest of (A8) as yielding an equation Thanks are due to G. Sandri and J. McCune of 
for tiD) which holds on an even longer time scale. Aeronautical Research Associates of Princeton, 
Since an H theorem exists for the Fokker-Planck New Jersey, for many stimulating discussions on 
equation without the correction terms, it is clear the subject matter of this paper. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 4, NUMBER 3 MARCH 1963 

Some Properties of the Reduced Density Matrix 

C. N. YANG 

Institute for Advanced Study, Princeton, New Jersey 
(Received 18 October 1962) 

Two conjectures made in a previous paper are proved. A further remark is made concerning the 
largest eigenvalue of the reduced density matrices. 

SOME properties of the reduced density matrix 
of an N -particle system of fermions or bosons 

were discussed in a recent paper. 1 Two conjectures 
were made in that paper concerning the largest 
eigenvalue of the reduced-density matrices. One of 
these conjectures has now been proved by BelV 
The purpose of this note is to supply a proof of the 
other conjecture and to make a further remark. 
For completeness, we repeat here Bell's proof. 
Both conjectures are restated here as theorems. 
All notations follow that of rt!ference l. 

Theorem: In a mixture of particles, consider 

(a', b',e' '" IPnl a, b,e, ... ), (1) 

where a, b, e are states of bosons or fermions. 
If the collection of particles in a, b, e, .. , > contain 
an odd number or fermions, then the largest eigen­
value of (1) is ~ a function, independent of N, 
of the largest eigenvalues of the reduced density 
matrices 

(a''', b"', ... IPml a", b", e", .. -), 

where a", b", e", ... is a subgroup of the particles 
in (1). 

Proot: The following proof is due to Bell. We 
consider the case of a collection of fermions and 
take the case n = 3. The proof can easily be general-

1 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
2 J. S. Bell, Phys. Letters 2, 116 (1962). 

ized to more complicated cases involving any value 
of n and involving a mixture of bosons and fermions. 

Let ~123 be the eigenfunction of P3 with the 
largest eigenvalue A3' Clearly ~123 is antisymmetrical 
in 1, 2 and 3. 
Write 

Then, 

F = I: ~~23ala2a3' 
123 

Aa = Sp ptFp ~ Sp (FtF + FFt)p. 

Now the anticommutator FtF + FFt can be easily 
computed in terms of products of four or less at and 
a's. It then follows that 

A3 ~ 9 L L ~~23(23 [p212'3')~12'3' 
1 232'~1 

Thus, 

(2) 

(3) 

Q.E.D. 

As stated in reference 1, it follows from this 
theorem that the basic group must contain a 
collection of particles forming a boson when taken 
together as a single unit. 

Theorem: There exists numerical constants (33' 
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f34, .. . so that 

An ::; (N) tnf3n for n = even, 

An ::; (N)!(n-llf3n for n = odd, 

for a system of identical fermions. 
Proof: (a) From (3) above and3 theorem 6 of 

reference 1, we obtain 

(4) 

(b) Let ~1234 be the eigenfunction of P4 with the 
largest eigenvalue A4' A spectral separation can 
be made: 

(1234 /P4/1'2'3'4') = A4~1234~r'2'3'4' 

+ positive semidefinite matrix. (5) 

Let 4 = 4' = fixed, and regard (5) as a matrix 
equation with the initial and final states 1'2'3' > 
and < 123. The largest eigenvalue of the right-hand 
side is 

(6) 

The left-hand side is 

t t t ( t A = Sp a3,a2,al,ala2a3 a4 pa4). 

Now a4pa! is a positive definite Hermitian matrix. 
It is therefore equal to P' Sp (a4pa!) where P' is a 
density matrix for N - 1 particles. Thus, 

A = [Sp (a4pa!)]p~, 

where p~ is a reduced density matrix constructed 
from p'. Thus the largest eigenvalue of A [using 
(4)] is 

::; [Sp a4pa!J [9(N - 1) + 6]. 

Using (6), one obtains 

A4 L /~1234/2 ::; 9N[Sp a4pa!J. 
123 

Summation over 4 gives 

A4 ::; 9N2
• (7) 

(c) To find an upper bound for A5 we proceed as 
in step (a) above. Then we find an upper bound for 
As by steps similar to (b) above. It is obvious that 
the theorem follows by induction. 

Q.E.D. 

3 Theorem 6 of reference 1 can be generalized to read 
).2 ~ [(N')(L' + 2)/(L' + N')] (A) 

for a system of N fermions in M possible states where N' = N 
or (N - 1) whichever is even, and L' = M - Nor M -
N - 1, whichever is even. Furthermore, the limit (A) for ).2 is 
realizable. It follows that ).2 ~ [N(M - N + 2)/M] ~ N. 

One may ask, what is the kinematically attainable 
upper bound of the largest eigenvalue of P3, P4, etc. 
for fixed M and N? This problem has not yet 
been solved. However, the following speculation 
seems to be very reasonable. We have seen in 
reference 1 that to obtain the largest eigenvalue 
of P2, one constructs a density matrix P which 
describes a pure state with the BCS pairing, i.e. 
with single-particle states grouped into pairs, 
each pair never singly occupied. It seems that the 
largest eigenvalue of P4 is also attained with such 
a density matrix. Its value is then given by 

3N(N - 2)(M - N + 4) 

X (M - N + 2)M-l(M - 2)-1, (8) 

where we assume both M and N to be even. 
More generally, it seems that for a system of N 

fermions in M states, the largest attainable eigen­
value of P21 is 

(2l); [N(N - 2) ... (N - 2l + 2)J 
l!2 

X [(M - N + 2)(M - N + 4) ... (M - N + 2l)J 

X [M(M - 2) ... (M - 2l + 2W 1
, (9) 

where M and N are assumed to be even. These 
large eigenvalues are obtained with the same pure­
state density matrix for all values of l, (i.e. the pure­
state N-particle wavefunction discussed in reference 
1 for the largest eigenvalue of P2; it is a state with 
BCS pairing). 

For the largest attainable eigenvalue of P21+1, 

take a system of N fermions in M states where M 
and N are both even. Construct a pure N-particle 
wavefunction with single-particle states 1 and 2 
always occupied, and the other M-2 states occupied 
by N-2 particles in the same manner as that de­
scribed in reference 1 for maximizing the eigen­
value of P2' The largest eigenvalue of P21+1 is then 

(2ll~/)! [(N - 2)(N - 4) ... (N - 2l) J 

X [(M - N + 2)(M - N + 4) ... (M - N + 2l)] 

X [(M - 2)(M - 4) '" (M - 2l)r 1
• (10) 

It thus seems that for all M, N, 

A < (2l)!N 1 (M - N + 2l)1 
21 - l!21 M ' (11) 

A < (2l + J2..! N1 (M - N + 2l)1 
21+1 - l!21 M' (12) 
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A fundamental problem which arises in determining whether two quantum mechanical systems 
are essentially identical is whether a unitary or antiunitary transformation exists which maps one set 
of dynamical variables into another. Since an elementary dynamical system is specified by giving 
an irreducible set of dynamical variables, we are led to investigate the following problem: Given two 
irreducible sets of operators with a one-to-one correspondence between them, find the algebraic 
properties of the two sets which make it pOllBible to infer the existence of a unitary or antiunitary 
operator relating them. A series of theorems is obtained from such considerations for finite dimen­
sional spaces. It is shown that if the second set of operators contains some of the algebraic properties 
of the first set, the two sets are related by a similarity transformation. By altering the requirements, 
this transformation is a unitary transformation. Indications are also given to show how the theorems 
can be extended to Hilbert spaces. The rigorous statements of the theorems and the proofs will be 
given in a second paper. Finally, in the Appendix there is given a definition of invariance of elementary 
quantum-mechanical systems based on the above theorems, giving the same results as Wigner's 
definition in terms of transition probabilities. 

1. INTRODUCTION 

IN quantum mechanics one is frequently con­
fronted with the problem of determining whether 

two dynamical systems are identical. Such a situa­
tion occurs when one wishes to determine whether a 
quantum mechanical system is invariant under a 
change in frame of reference. If one has a set of 
dynamical variables referring to the original frame, 
one can introduce an analogous set associated with 
the second frame. The two sets of dynamical 
variables can be interpreted as describing two 
dynamical systems as viewed from the original frame. 
If the two dynamical systems are identical, one says 
that the original dynamical system is invariant under 
the change of frame of reference. 

Whether two dynamical systems are identical or 
not is basically a matter of proper definition. The 
definition most frequently used is due to Wigner. 1 

He requires transition probabilities given in terms 
of the first set of dynamical variables equal those 
given by the second set. His definition leads to the 
requirement that the second set of dynamical 
variables must either be unitarily equivalent to 
the first set, or unitarily equivalent to the set of 

* This work was done while H. E. Moses was at Geophysics 
Corporation of America. 

1 E. P. Wigner, Group Theory (Academic Press Inc., 
New York, 1959), p. 325 fl. 

operators formed by taking the complex conjugates 
of the operators of the first set. 

The present theorems arose out of an attempt to 
see whether one could infer the existence of such 
unitary operators by examining the algebraic struc­
ture of the sets of dynamical variables. One might 
think, for example, that if the commutation rules 
of the second set of dynamical variables were the 
same as the first set, a unitary operator would exist. 
It is well known, however, that there are numerous 
counter-examples. Hence such an algebraic property 
is not adequate. We will present a set of adequate 
properties. 

We shall now state the basic algebraic theorems, 
after introducing some notation. 

We shall be concerned with two irreducible sets 
of n X n matrices. By an irreducible set of n X n 
matrices we mean a set for which there is no non­
trivial invariant subspace in the n-dimensional car­
rier space (see reference 2, page 19). We shall denote 
the two sets by IAal and IBal, where a goes 
through a range of values which is the same for 
both set of matrices. We permit the range of a to be 
either finite or infinite or even nondenumerable. We 
regard the matrices of the two sets as having a 
one-to-one correspondence as indicated by the same 
subscript. 

A finite polynomial in the set of matrices I A a} 
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IRREDUCIBLE SETS OF OPERATORS.!' 421 

is defined as a finite sum of ordered products of 
matrices selected from the set with complex numbers 
as coefficients, i.e. a polynomial will have the form 

cI + Lc;A. + LCiiA;A; + ... , 
i ij 

where c, co, ci ; .,. are complex numbers and Ai, 
Ai' .. are matrices selected from the set. 

We shall denote by peA), q(A), etc., finite poly­
nomials in the matrices A". The matrices pCB), 
q(B) etc. will be polynomials in the matrices B" 
obtained from peA), q(A), .. , by replacing the 
matrices A a by the corresponding matrices B a' By 
pCB), q(B) ... we denote matrices obtained by 
replacing the scalars in peA), q(A) by their complex 
conjugates and the matrices A" by the corresponding 
matrices B a' 

By Ba we mean the matrix whose elements are 
the complex conjugates of Ba. A Hermitian adjoint 
is denoted by a dagger. 

Theorem I. Let I A a 1 and I B a 1 be two irreducible 
sets of n X n matrices which are labeled by the 
index set I a I. Then a necessary and sufficient con­
dition for the existence of a nonsingular matrix S 
such that 

is that peA) = 0 implies pCB) = 0 (all p). 
Theorem 1*. A necessary and sufficient condition 

that a nonsingular matrix S exists such that 

Aa = SEaS-I, 

is that peA) = 0, implies pCB) = 0 (all p). 
Theorem II. Let the matrices of the irreducible 

sets I A a 1 and I B" 1 be Hermitian. Then a necessary 
and sufficient condition for the existence of a unitary 
matrix U such that 

Aa = UB aU- 1
, 

is that peA) = 0 implies pCB) = 0 (all p). 
Theorem II*. Let the matrices of the irreducible 

sets I A a I and I B a I be Hermitian. Then a necessary 
and sufficient condition for the existence of a uni­
tary matrix U such that 

Aa = UE aU- 1
, 

is that peA) = 0 implies pCB) = 0 (all p). 
Let us discuss Theorem I which is the most im­

portant of the theorems. Surprisingly, the condition 
is not symmetric with respect to the irreducible 
sets of matrices. But a consequence of the theorem 
is that the condition is indeed symmetric. 

For applications, Theorems II and II* are the 

most interesting. The sets of matrices correspond to 
the sets of dynamical variables. One can then test 
to see whether a unitary or anti unitary operator 
exists which transforms one set into another. 

A definition of invariance based on these theorems 
is given in the Appendix. 

2. PROOFS OF THE THEOREMS 

We shall now prove Theorem 1. Since the necessity 
is obvious, we shall prove only the sufficiency. The 
proof depends very heavily on the properties of the 
irreducible representations of the rotation group.3 
Consider three n X n matrices 81, 82, 83 which form 
an irreducible set and which satisfy the following 
commutation rules. 

[81,82] = isa, [83,82] = i81' [81,82 ] = i8a. (1) 

Consider a second set of n X n matrices which 
we call tl , t2 , t3 which also form an irreducible set 
and also satisfy (1). Then by the theory of repre­
sentations of the rotation group, a nonsingular 
matrix S exists such that 

for all i. 
The matrices 8. and t; are spin matrices. We shall 

use them as a sort of basis in which to express our 
matrices Aa and Ba. The spin matrices are in a 
sense the simplest irreducible set of matrices which 
can be found in an n-dimensional vector space. 

Let us take a particular irreducible set of n X n 
spin matrices 18; I· Since the set I A a 1 is an ir­
reducible set, each spin matrix can be expressed as 
a finite polynomial in terms of the set. 

81 = peA), 82 = q(A), 83 = rCA). (2) 

II = pCB), 12 = q(B) , 13 = reB). (3) 

We shall now show that the set of matrices It;) 
satisfies the spin commutation rules (1). Since the 
set 18, I were chosen to be the spin matrices we can 
write 

= v(A), (4) 

where v(A) is the polynomial obtained by using (2) 
for 81 and 82 , But also from (2), 

.2 H. WeyI, Classical Groups (Princeton University Press, 
Pnnceton, New Jersey, 1946). 

a J. S. Lomont, Applications oj Finite Groups (Academic 
Press Inc., New York, 1959), p. 149 fl. 
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rCA) = v(A). (5) 

Now using (3), But from Schur's lemma, 

-i[tl , t21 = v(B). (6) sts = AI, 

By the condition of the theorem, 

v(B) = reB). (7) 
Hence, 

(8) 

That I ti } satisfies the remaining commutation rules 
is proved similarly. We shall now show that the 
set {td is an irreducible set. 

Since the matrices {Si} form an irreducible set, 
we can express each of the matrices A" as a poly­
nomial in these matrices: 

(9) 

If we now substitute for Si the expressions (2) into 
(9), we obtain 

A" = w,,(A). (10) 

That is, A" is expressed as a polynomial in {A a} . 
Let us define 

(11) 

where u,,(t) is obtained from u,,(s) by replacing 
each Si by the corresponding ti. 

On using (3), we obtain 

(12) 

But from (11) and the conditions of the theorem, 
M" = B" and hence, 

(13) 

Now if the matrices {t;J are reducible, the matrix 
which reduced the set {t i } would also reduce the 
set {B,,}. But the set {B" I is irreducible. Hence the 
set {t i } is irreducible. Thus, a nonsingular matrix S 
exists which transforms the set {t i } into {Si}. On 
using (9) and (13) it is seen that the same matrix S 
transforms the set {B,,} into {A,,}, which proves 
the theorem. 

Theorem 1* follows directly from Theorem I. 
Theorem II is proved as follows: 
Since the matrices {A" } and {B" } are now 

assumed to be Hermitian, the equations 

A" = SB"S-l 

lead to 

A" = S-ltB"St 

on taking Hermitian adjoints. From this it follows 

where X is a scalar. On taking adjoints, 

sts = H. 

Hence, X is real. Also, since S is nonsingular, X is 
not zero. 

Finally, using the fact that the trace of the matrix 
st S is positive definite, it follows that A is positive. 
Then the operator U defined by 

U = SIX! 

satisfies the requirements of the theorem. 
Theorem II* is proved easily from Theorem II. 
lt should be mentioned that the theorems can 

be proved by more conventional algebraic means. 
For example, by the conditions of Theorem I, it 
can be shown that the enveloping matrix algebras 
of {A,,} and {B,,} are simple and that one is ob­
tained by an automorphism from the other. Then 
the existence of S follows from lemma 9.1 A.2 

3. EXTENSION TO HILBERT SPACES 

For applications to quantum mechanics, one would 
naturally want to extend the results to Hilbert space. 
It seems possible to proceed in a formal way and 
get similar results if one ignores the real difficulties 
of domains of definition and problems of convergence 
of infinite series. The operators which take the 
place of the spin operators are the irreducible set 
P and Q which satisfy 

[P, Ql = i. 
In accordance with Von Neumann's theorems, these 
operators are essentially unique if they are hyper­
maximal. 
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APPENDIX. RELATED THEOREMS AND A 
PROPOSED DEFINITION OF INVARIANCE 

The Theorems which were given in the previous 
sections are some of a class of related theorems all 
of which are proved in the same way. A theorem 
which is useful for a proposed definition of invariance 
is the following: 

Theorem III. Let {A,,} and IB,,} be two ir-
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reducible sets of Hermitian matrices. Let peA), 
q(A), etc. be all the polynomials in {Aa} which 
are Hermitian. Then, necessary and sufficient con­
ditions for the existence of a unitary matrix U 
such that 

Aa = UBaU- 1
, 

is that (1) pCB), q(B), ... also be Hermitian, and 
(2) if peA) = q(A), then pCB) = q(B), etc. 

Theorem III*. A necessary and sufficient condition 
that a unitary operator U exist such that 

Aa = UBaU- 1
, 

is that (1) pCB), q(B), etc. be Hermitian and (2) 
that peA) = q(A) implies pCB) = q(B). 

On the basis of these theorems which we also 
assume to hold in Hilbert space (where polynomials 
are replaced by more general functions), we give a 
definition of invariance in terms of operators, which 
will have the same consequences as Wigner's defini­
tion in terms of transition probabilities. We are 
concerned with the way dynamical variables can be 
constructed from a given set of dynamical variables. 
(Incidently, we take the attitude that all hyper­
maximal operators are dynamical variables for ele­
mentary systems which have no superselection rules). 
We state that one dynamical variable is constructed 
from a set of dynamical variables in the same way 
as a second dynamical variable is constructed from 
the second set of dynamical variables, if the first 
and second dynamical variables are the same func­
tions of the first and second set, respectively. 

We further state that a dynamical variable is 
constructed in a complex-conjugate manner if the 
scalars which are involved are replaced by complex 
conjugates. 

Now to our definition: Let us consider two dy­
namical systems (1) and (2) which are elementary 

in the sense that there are no superselection rules 
(for example, systems in which there is no particle 
creation or destruction). Such dynamical systems 
are always specified by giving an irreducible set 
of dynamical variables which we denote by {A a } 

and {Ba} for systems 1 and 2, respectively. We 
shall say that systems 1 and 2 are identical if the 
following three requirements are met: 

(1) It is possible to select the set {B a} such that 
there is a one-to-one correspondence with the 
set {Aa}. 

(2) Let C be any dynamical variable in system 
(1). Then C can be constructed from the set {A a } • 

Let G' be the operator constructed from the set 
{Ba} in the same way as G is from the set {Aa}. 
Let Gil be constructed from {B a} in the complex­
conjugate way. Then either the entire set {G'} 
or {Gil} must consist of hypermaximal operators. 

(3) For operators C which can be constructed 
in a second way from {A a } , the corresponding opera­
tor of the set of hypermaximal operators G' or Gil 
must be constructed in an analogous second way 
from {B a }. 

From Theorem III and III* (actually the Hilbert­
space extensions of these theorems), there is either 
a unitary or antiunitary operator which transforms 
all dynamical variables of system 1 into those of 
system 2. 

It might be mentioned that in classical mechanics 
where we deal only with real functions of scalar 
dynamical variables, the dynamical variables G' and 
Gil would be identical and real. Furthermore, there 
would be only one way to construct C from {A a}. 
Hence, requirements (2) and (3) are quantum me­
chanical in nature. It is rather interesting to note 
that we need not make any requirements relative 
to the spectra of the dynamical variables. 
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On Strain Energy Functions for Isotropic Elastic Materials* 

LINCOLN E. BRAGG AND BERNARD D. COLEMAN 

Mellon Institute, Pittsburgh, Pennsylvania 
(Received 31 August 1962) 

This article deals with isotropic elastic materials which possess a strain energy function. For such 
m~te:ials the strain energy of a material point is given, of course, by a symmetric function iT of the 
prmcipal stretches VI, V2, Va at that point. It is known that a necessary condition to have an isotropic 
material compatible with the axioms for thermostatics proposed by Coleman and Noll is that the 
function iT be jointly and strictly convex in its three variables VI, VI, Va. Here we show that this condition 
is rwt sufficient for compatibility with the thermostatic axioms. 

INTRODUCTION 

I T is the purpose of this note to settle a point in 
finite elasticity theory. We consider the theory 

of materials which are perfectly elastic in the sense 
of Green, Le. materials for which the strain energy 
(T is given by a smooth function u over the set 
of all deformation gradients (i.e., all invertible 
tensors) F.I We deliberately ignore the possible 
dependence of (J' on thermodynamic variables, 
such as the temperature or entropy, and thus (J' 

may be interpreted as either the internal energy 
or the Helmholtz free energy, per unit mass. We 
assume, of course, that the function u is compatible 
with the principle of material objectivity, i.e. that 

u(QF) = u(F) (1) 

for all tensors F and all orthogonal tensors Q. 
In a recent axiomatization2 of the thermostatics 

of continuous media, postulates are made which 
in our present context are equivalent to the assump­
tion that every stored energy function u should 
obey the following 

Fundamental Thermostatic Inequality (FTI): For 
all pairs of deformation gradients F", F' such that 
F" ~ F' and F"F

,
- I is positive-definite and sym­

metric, we have 

u(F") - U(F') - tr [(F" - FI)Up(F')] > 0, (2) 

where Up is the (tensor-valued) gradient of the 
(scalar-valued) function u. 

We say that u is a strain energy function (relative 

* The research leading to this article was supported by 
the Air Force Office of Scientific Research under Contract 
AF 49(638)541 with Mellon Institute. 

I We denote scalars by Latin and Greek minuscules 
and tensors by Latin majuscules. Superimposed hats, tt, 
and bars, iT, are used to distinguish different functions whose 
values are the same physical quantity, tI. 

lB. D. Coleman and W. Noll, Arch. Rational Mech. 
Anal. 4, 97-128 (1959). 

to an undistorted configuration) of an isotropic 
material if 

6(F) = 6(FQ) (3) 

for all invertible tensors F and all orthogonal 
tensors Q. 

Let F = VR be the (unique) left polar decomposi­
tion of a deformation gradient tensor F. Here R is 
an orthogonal tensor, called the rotation tensor for F, 
and V is a symmetric positive-definite tensor 
called the left stretch tensor for F. The proper numbers 
v, of V are called the principal stretches corresponding 
toF. 

It is a well known result in elasticity theory that 
a necessary and sufficient condition that u be a 
strain energy function of an isotropic material 
is that there exist a symmetric function q of three 
positive scalar variables, such that for each deforma­
tion gradient F, 

(4) 

Here VI, V2 , Va are the principal stretches correspond­
ing to F, and iJ is symmetric in the sense that 

iJ(VI ,V2 ,Va) = iJ(V""v"., v,..,), (5) 

where 11", is any permutation operator over 1, 2, 3. 
On page 115 in reference 1, it was pointed out 

that for an isotropic material, a necessary condition 
that u obey the FTI is that the function ii(VI' V2, va) 
of (4) be strictly and jointly convex in the VI' V2, Va, 

i.e. that 

iJ(vi / , v~', V~/) - iJ(vi, v~, vD 

~ ( ,,_ ') aiJ (' I ') f:t Vi Vi av, VI, v2 , Va > 0, (6) 

whenever V~' r5- v~ for at least one i. When this result 
was obtained, it was remarked that it was not known 
whether or not strict and joint convexity of iJ be a 
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sufficient condition for an isotropic material to obey 
the FTI. It is this point which we wish to settle here. 

SOLUTION BY COUNTER EXAMPLE 

We now produce a simple counter example to 
show that strict and joint convexity of ij is not 
sufficient for the FTI to hold for isotropic materials. 

Continuing to let VI, V2, Va be the principal stretches 
corresponding to F, we consider the following 
particular strain energy function: 

tJ*(F) = ij*(Vl' V2, va) 

= !(v~ + vi + vi) - K(VI + V2 + va); (7) 

u* obviously defines an isotropic material. Here K is 
a real number to be determined later. We note 
that for any choice of K, ij* is strictly and jointly 
convex in the Vi for all values of the Vi' (Indeed, 
independently of K, the Hessian matrix of the second 
partial derivatives of ij* has, for all Vj, the form 

100 

(13) 

i.e., u is an isotropic function. The gradient of an 
isotropic function is also an isotropic function 
(albeit of higher tensorial rank). Thus, whenever 
F is symmetric, 6~(F) and F have the same proper 
vectors. We make use of this fact, and Eqs. (7) 
and (9), to calculate the matrix of the components 
of u~(F') relative to hi and find 

aij* 
0 aVl 

0 

16~(F')i; I = 0 
aij* 
aV2 

0 

0 0 
aij* 
OVa 

vf - K 0 0 

o V~ - K 0 (14) 

o 0 vi - K 

I a2ij* I = 0 1 0, 
Uv; av; 

Equations (9)-(11), and (14) yield, after a direct 
(8) calculation, 

001 tr [(F" - F')6~(F')] = O. (15) 

and hence is always positive-definite.) We shall From Eqs. (12), (15), and (7), we have 
now show that there exist values of K such that 
ij* does not obey the FTI for particular F' and F". 

Let F' be such that the matrix of its components 
relative to some fixed orthonormal basis h', i 
1, 2, 3, is given by 

vf 0 0 

g(F",F') = ij*(vf',v~',V~') - ij*(V:'V~,v~), (16) 

where the vi', vr, V~/, are the principal stretches 
corresponding to F", i.e., the proper numbers of 
V" in the left polar decomposition 

V"R" = F" = GF'. (17) . 

lF~il = 0 v~ O. (9) We now calculate the v~'. It is evident from (9) 

0 0 v~ 

Let G be such that relative to hi, 

1 X 0 

IGul = X 1 O. (10) 

0 0 1 

The symmetric tensor G is positive-definite and 
not equal to I whenever 0 < Ixi < 1. We now put 

F" = GF', i.e. F"F,-l = G, 

and evaluate 

g(F", F') = u*(F") - u*(F') 

- tr [(F" - F')Q~(F')]. 

(11) 

(12) 

It follows from (1) and (3) that if u determines an 
isotropic material, then for all F and all orthogonal Q, 

and (10) that the rotation R" in (17) must be 
such that relative to hi, 

cos (} sin (} 01 
IRi~1 = -sin (} cos (} 

:1' 
(18) 

0 0 
Hence, since V" = GF'R"T, 

1 X 0 vi 0 0 cos (} sin (} 0 

IVm = X 1 0 0 v~ 0 -sin (} cos (} 0 

o 0 1 0 0 v~ o o 1 

vi cos (J - v~X sin (J vi sin (J + v~X cos () 0 

vi>" cos (J - v~ sin (} vi>,. sin (} + v~ cos () O. (19) 

o o 
Since IV~~I is symmetric by definition, it follows 
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from (19) that g(F", F') = a{aX2(1 + b2) 

(20) 
- 2K[(1 + X2b2)1 - 1ll. (24) 

When K = 20, the choice, vi = 3, v~ = 1, X = fo, 
We now consider the characteristic equation v~ arbitrary, yields, through Eqs. (22b) and (24), 

det (V" - uI) = O. (21) g(F", F') = 0.05 - 80[(1.0025)i - 1] < O. (25) 

It follows from (19) and (20) that (21) has the form When K = 1, which would make the reference state 

(u - Va)[U2 
- 2ua(1 + X2 b2)1 + vivW - X2)] = 0, 

(22a) 

where 

vi + v~ a=--·-
2 ' 

(22b) 

Identifying the v~' with the roots of (21), we find that 

v~' = ar(l + X2 b2)! ± W + X2)!], i = 1,2 (23a) 

v~' = v~, (23b) 

and 

VI = V2 = Va = 1 a stress-free state, the choice, 
vi = -io, V; = -h, X = t, v~ arbitrary, yields 

g(F", F') = -23/2880 < O. (26) 

Thus we construct strain energy functions which 
do not obey the FTI although they are convex in 
the principal stretches. 

The possibility of finding such a simple counter 
example was suggested to us by a theory of "con­
vexity curves for the FTI," which one of us (LEB) 
is to publish soon in the Archive for Rational 
Mechanics and Analysis. 
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A simple modification of a method introduced by R. Bellman is proposed, which under certain 
circumstances produces both upper and lower bounds for the solution of the Riccati equation. An 
application to scattering theory is suggested. 

I. INTRODUCTION 

IN this note we consider the generalized Riccati 
equation 

Y'(x) + a(x)y2(x) + b(x)y(x) + c(x) = 0, 

yeO) = y, (1.1) 

for real positive values of the variable x. This 
equation is of interest per se, as it arises in many 
problems of physical relevance. Moreover, its 
solution y(x) is connected to the solution cp(x) 
of the linear second-order equation 

cp"(x) + [b(x) - a'(x)/a(x)]cp'(x) 

+ c(x)a(x)cp(x) = 0, (1.2) 
through 

a(x)y(x) = cp'(x)/cp(x). (1.3) 

Note that the zeros and poles of y(x) correspond 
to the zeros of cp'(x) and cp(x), respectively [assuming 
a(x) to be nonzero, and a(x), cp'(x), and cp(x) non­
singular]. 

An elegant representation for the solution y(x) 
of Eq. (L1) has been derived by R. Bellman. 1 

In this representation, which holds in the interval 
from 0 to x provided in this interval a(x) is positive 
semidefinite and y(x) is continuous, the solution 
y(x) appears as the minimum of an explicitly known 
functional, namely 

y(x) = m!n [YO exp ( - lZ [b(x') + 2a(x')u(x')] dx') 

The minimum is actually achieved for 

u(x) = y(x). (1.5) 

This expression may be used to obtain approximate 
evaluations of y(x), using trial functions u(x) 
which "resemble" y(x) as much as possible. Upper 
bounds for y(x) are thus provided as long as one 
knows that in the interval from 0 to x, y(x) is 
continuous. Note that the representation Eq. (1.4) 
implies that, if instead, a divergency occurs in that 
interval, it is one in which y(x) goes to - 0); or, 
in other words, any pole in that interval of the 
positive real axis must have a positive residue. 
This is also obvious from the differential equation 
(1.1), remembering the condition a(x) ;::: O. 

The purpose of the present note is to point out 
that by means of an elementary modification of 
Bellman's method, a second representation for the 
solution y(x) of the Riccati equation can be derived, 
in which y(x) appears as the maximum of an explicitly 
known functional. This representation is valid in the 
interval from 0 to x, provided in that interval 
c(x) is negative semidefinite and y(x) never vanishes. 
It states 

y(x) = m~x [:0 exp (f [b(x') + 2c(x')v(x')] dX') 

+ lZ [a(x') - c(x')v2(x')] dx' 

(1.6) X exp (i~ [b(x") + 2c(x")v(x")] dx") T 1 

+ l% [a(x')u
2
(x') - c(x')] dx' = max C[v; x]. 

( 1% )] The maximum is now achieved for 
X exp - _, [b(x") + 2a(x")u(x")] dx" (1.4) 

• vex) = l/y(x). (1.7) 

= B[u; x]. The validity of the representation (1.6) also requires 
* Harkness Fellow of the Commonwealth Fund, New York, that the bracket in the right-hand side (r.h.s.) of 

on leave of absence from L'Istituto Nazionale di Fisica Eq. (1.6) does not vanish in the interval from 0 to x. 
Nucleare, Sezione di Roma, and L'Istituto di Fisica dell' If a(x) is positive semidefinite, c(x) is negative 
Universita, Roma, Italy. 

1 R. Bellman, Proc. Natl. Acad. Sci. U.S. 41, 743 (1955). semidefinite, and Yo is finite and nonzero, there will 
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certainly be an interval from 0 to x in which both 
representations [Eqs. (1.4) and (1.6)] hold. In fact, 
both representations hold for all positive x's if Yo is 
positive, because they imply that y(x) is positive 
definite and bounded.2 They can therefore be used 
to evaluate y(x) and lead to the statement that its 
value falls within a definite interval, and the smaller 
that interval, the better the trial functions approxi­
mate the solution y(x). Such controlled approxima­
tions are obviously of great value to the physicist. 
Also, if Yo is negative and y(x) has a pole on the 
real axis, the functional C[v; x] may be used to 
locate the position x" of the pole, through the 
relation 

x" = max Xlv], (1.8) 

where the functional Xlv] is defined by 

{C[V;X])-I = 0 
(1.9) 

C[v; x] < 0 for 0 ~ x < X. 

The maximum in Eq. (1.8) above is achieved for 
vex) = l/y(x). This method thus provides, through 
the transformation Eq. (1.3), a lower bound on the 
position of the zero, if any, of the solution of a 
second-order linear differential equation, whose 
coefficients satisfy the previously stated conditions. 

In the next section, Bellman's derivation of the 
representation (1.4) is recalled, and the modification 
necessary to derive the representation (1.6) is 
introduced. In the last· section, an application to 
scattering theory is proposed. 

In the following we will generally assume that 
a(x) and e(x) are semidefinite, positive and negative 
respectively. This limitation, however, is less 
restrictive than it might appear, due to the possi­
bility of transforming the coefficients of the Riccati 
equation. In fact, the function Y(x), connected to 
the original function y(x) through 

Y(x) = (P(x) + q(x)y(x)(r(x) + s(x)Y(X))-l 

y(x) = - (P(x) - rex) Y(x»(q(x) - sex) Y(x» -I, 

also satisfies a Riccati equation 

(1.10) 

Y'(x) + A (x) y 2
(x) + B(x) Y(x) + C(x) = 0, (1.11) 

YeO) = (P(O) + q(O)yo)(r(O) + s(O)YO)-l. 

I That y(x) is finite and nonzero if yo > 0, can be seen 
directly from the differential equation (1.1), because a(x) ~ 0 
implies that y(x) cannot diverge to + 00, and c(x) ~ 0 implies 
that y(x) can cross zero only from negative to positive values. 
It is similarly seen that if yo is negative, y(x) either has one 
zero (and no pole), or is negative definite, or has one pole 
(and no zero). 

The new coefficients are connected to the old ones 
through 

A = Q(el - brs + ar2 + rs' - r's), 

B = Q( -2cqs + b(ps + qr) - 2apr 

+ p's - ps' + qr' - q'r) , (1.12) 

C = Q(eq2 - bpq + ap2 + pq' - p'q), 

Q = (qr - pS)-I. 

It is thus often possible to choose the functions p, q, r 
and 8 in such a way, so as to ensure the correct 
semidefiniteness properties of A (x) and C(X).3 
One can then obtain a controlled approximation 
for Y(x), which, through Eq. (1.10), produces a 
controlled approximation for y(x). Of course, in the 
neighborhood of a pole of y(x), a small indeterminacy 
in Y(x) results in a large indeterminacy for y(x). 
This method may also be used to locate the poles 
of y(x) on the real axis. 

In the following we will always consider non­
negative values of the variable x. All the results 
are trivially extended to the case of nonpositive 
x's introducing 

z(x) = -y(-x), 

which satisfies the equation 

(1.13) 

z'(x) + a( -x)l(x) - b( -x)z(x) + c( -x) = o. (1.14) 

II. BELLMAN'S METHOD 

Recalling the identity 

_y2(X) = min [u2(x) - 2y(x)u(x)], (11.1) .. 
and using the property that a(x) is positive semi­
definite, we may write Eq. (1.1) in the form 

y'(x) = min [a(x)(u2(x) - 2y(x)u(x») .. 
- b(x)y(x) - c(x)]. (II.2) 

We then introduce the functional B[u; x] through 

B'[u; x] = a(x) {u2(x) - 2B[u; xl} 

- b(x)B[u; x] - e(x), 

B[u; 0] = Yo. (II.3) 

Note that B[u; x] is a functional of u(x) and a 
function of x, and B'[u; x] indicates its derivative 
with respect to x. 

Now as long as y(x) is continuous in the interval 

8 A trivial example is the case a(x) ~ 0, c(x) ~ 0, when 
p = 8 = 0, T = 1, q = -1 does the job. 
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from 0 to x, we certainly have 

y(x) = min B[u; x], (1l.4) .. 
because yeO) and B[u; 0] coincide and y'(x) ::; 
B'[u; x]. The minimum is actually achieved for 
u(x) = y(x), as is seen comparing Eqs. (11.2) 
and (1.1). 

But Eq. (II.3) can be solved, and it yields 

B[u; xJ = Yo exp ( - f' [b(x') + 2a(x')u(x')] dx') 

+ .C [a(x')u
2
(x') - c(x') J dx' 

X exp ( - i: [b(x") + 2a(x")u(x")] dx") . (II .5) 

Eq. (I.4) is thus proved. 
Now, to prove Eq. (1.6), we introduce the function 

w(x) = I/y(x). It satisfies the equation 

w'(x) - c(x)w2(x) - b(x)w(x) - a(x) = 0, 

w(O) = l/yo' (II.6) 

Using the fact that -c(x) is positive semidefinite, 
and proceeding as before, we obtain 

w(x) = m!n [y;;1 exp (f' [b(x') + 2c(x')v(x')] dx') 

+ f' [a(x') - c(x,)v2(x,)] dx' 

X exp ({ [b(x") + 2c(x")v(x")] dX") J. (11.7) 

This equation is valid as long as w(x) is continuous, 
i.e. as long as y(x) does not vanish. 

Finally, using the fact that as long as the values 
of A are of the same sign; 

(11.8) 

III. CONCLUSION 

As previously mentioned, a Riccati equation 
occurs in a number of physical problems, so that 
the possibility of a controlled approximation to its 
solution should provide a useful tool to the physicist. 
We discuss here only one application, to elementary 
scattering theory. 

Let V(r)B(ro - r) be a spherically symmetric 
finite-range potential. The I-wave S-matrix element 
S(l, k) = exp (2i 0(1, k» is then given by the relation' 

(IlL I) 

where TI and qi"') are known functions (defined in 
Reference 4), and 

(III.2) 

~(r) is that solution of the radial Schrodinger 
equation 

rp"(r) + (k2 
- VCr) - l(l + I)r-2)~(r) = 0, (III.3) 

which is regular in the origin, i.e. such that 

~(r) ~ const X 1'1+1. (III.4) 
.-0 

Introducing the function 

y(r) = (l + l)-Ir~'(r)/~(r), (III.5) 

which satisfies the Riccati equation 

y'(r) + l yZ(r) - .! y(r) 
l' l' 

+ (k2 
- V(r»r(l + 1)-1 - l1'-1 = 0, (III.6) 

yeO) = 1, 

we have 

qz = (l + I)y(ro). (II 1.7) 

Let us now consider the low-energy, high-angular 
momentum case/ so that 

we prove Eq. (I.6), which will thus hold as long as 
the bracket in the r.h.s. of Eq. (11.7) does not go 0(1'0 - r) [W - V(r»r - l(l + 1)1'-1] ::; O. (IlL8) 

through zero. We may then conclude that 

~ A. Messiah, Quantum Mechanics (North-Holland Publishing Company Amsterdam 1961) Vol I p 391 
6 It is of course well known that under these circumstances 8(1, k) will be ";ery close to i. ' .,. . 
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ql = (1 + l)ro m~x {l.~ [E exp (2 fro [(Z + 1) -lr(k2 
- VCr»~ - Ir- I

] dr v(r») 

+ r· dr [1 + 1 + v2 (r)(l - r2(e - V(r»(l + 1)-1)] 

X exp (2 r· [Cl + 1)-ltW - VU» - It-I]v(t) dt) J}. (111.8) 

With the simple choices 

u(r) = m> [2(1+ l)r\ vCr) = n > -(2l)-I, (III.9) 

m and n being constant, we have 

ql ::::; (l + 1)[1 + m2(l + 1)][2(l + l)m - 1rl 
- [2(l + l)m + 1rl(kro? 

r" + r~-2(1+1)'" 10 drr20+l)"'V(r). (III. 10) 

qz ;?:: (l + 1)r~nl+l exp [-(l + 1)-lnCkro)21 

X LC· dr f(l + 1 + ln2)r2ln + (l + 1)-V(V(r) - e)rZ(ln+l)] 

X exp ( -(1 + l)-ln[ (krl + 2 fro r'V(r') dr' J) JI. (III.H) 

Finally, choosing m = 1, n = 0, one obtains the 
simple (but poor) bounds 

1 ::::; ql ::::; 1 + 1 - (2l + 3)-'(kro)2 

(111.12) 

In the case of a square-well potential, Eqs. (HUO) 
and (III.H) simplify to 

ql ::::; (1 + 1)[l + m2(l + 1)][2(l + l)m - 1]-1 

- [2(l + l)m + 1rl(pro)2, (IIL13) 

ql ;::: (l + l)r~nl+1 exp [-(l + If'n(pro)2J 

X {i r

• dr [(Z + 1 + Zn2)r2ln - (1 + 1f'n2pV(ln+,) J 

X exp [-(l + 1)-ln(pr)2]t
l

, (IlL 14) 

where 

To simplify even more, let us consider the S-wave 
case, also assuming the potential to be repulsive 
so that p2 < O. We then obtain 

qo ::::; m2(2m - 1)-1 - (2m + 1)-I(prO)2, (II1.16) 

qo ;::: ro exp [-n(pro)2] 

X {i r

• dr [1 - n2p2rZ] exp r-n(pr)2]tl. (IILI7) 

Finally, let us assume - (prO)2 « 1. With the choices 
m = n = 1, we then have 

qo ::::; 1 - i(pro)Z, 

qo ;::: 1 - t(pro)2 + O[(prO)4], 

so that we may assert that 

qo = 1 - i(pro)Z + O[(pro)4]. 

The exact solution is 

(IIL18) 

(III.19) 

(IIL20) 

(IIL21) 

(IILl5) which is in agreement with what we have found. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 4, NUMBER 3 MARCH 1963 

Symmetry Functions of the Cube 

GEORGE T. TRAMMELL* 

Oak Ridge National Laboratory, Oak Ridge, Tennessee 
(Received 9 July 1962) 

A simple method is presented for reducing the 2J + 1 state vectors of good total angular momentum 
J to cubic symmetry types (basic vectors of the irreducible representations of the cubic rotation group). 
The cubic symmetry functions are written explicitly in terms of the eigenfunctions of J., J z, and J v, 
and formulas and tables which facilitate their use in obtaining eigenfunctions and energy splittings 
of ions in fields of cubic symmetry are presented and applied. 

I. INTRODUCTION 

I N the course of studying the mechanism of mag­
netic ordering of the rare-earth intermetallics1 

(the anion in the nitrogen column), it became neces­
sary to obtain the energy eigenvalues and eigen­
functions of the rare-earth ion in a "crystal field" 
of cubic symmetry. Earlier work2 neglected either 
the sixth-order potential (see below), which can be 
important,l or the eigenfunctions, which are needed 
for computing the effect of magnetic (or exchange) 
fields. Recently Ebena and Tsuya3 have computed 
and tabulated the energy eigenvalues and eigen­
functions in the general cubic potential for atoms 
with J ::; 8. The availability of these tables make 
it unnecessary to give here our computations of 
the energy splittings of the second-half rare-earth 
ions; however, it is worthwhile to record a different 
method for finding and representing the eigenfunc­
tions. The purpose of this note is to indicate how, 
from a manifold of states of given angular momen­
tum, symmetry functions of the cube may be im­
mediately constructed, and how these may be used 
expeditiously to obtain the eigenfunctions and eigen­
values (within a manifold of given J) in the crystal­
line potential. 

According to Bethe,4 the irreducible representa­
tions of the single-cubic group consists of two one­
dimensional, one two-dimensional, and two three­
dimensional representations called by him r 1 to r s, 

respectively, whereas the double group has in ad­
dition two two-dimensional and one four-dimensional 

* To join Rice University in Fall of 1962. 
1 A preliminary account of this work was reported at the 

C<?nf«;rence on Magnetism and Magnetic Materials, Detroit, 
MlChlgan, November, 1959, [G. T. Trammell, J. Appl. Phys. 
31, 362S (1960)]. 

2 G. J. Kynch, Trans. Faraday Soc. 33, 1402 (1937); 
S. Odiot and D. Saint-James, J. Phys. Chern. Solids 17 117 
(1960); R. L. White and J. P. Andeline, Phys. Rev.' 115, 
1435 (1959). 

3 Y. Ebina and N. Tsuya, Sci. Repts. Research Insts, 
Tohoku University B12, Nos. 1 and 3-4 (1960). 

4 H. A. Bethe, Ann. Physik 3, 133 (1929). 

representation, r 6, r 7, and r g • States of integral 
angular momentum transform according to the single 
group; those of half-odd integer angular momentum 
according to r 6 , r 7 , and r g • 

If the Hamiltonian transforms as r I under 
a group of transformations, i.e., is invariant under 
the group, then since r 1 X r i = r i , where r, is 
any of the irreducible representations of the group, 
the result of the Hamiltonian operating on a good 
symmetry function-a basis vector of one of the 
irreducible representations of the group-again gives 
a symmetry function of the same type. Hence, the 
eigenfunctions of the Hamiltonian are simultaneously 
good symmetry functions (with the degeneracy of 
the eigenvalue equal to the dimension of the ir­
reducible representation to which the symmetry 
function belongs). 

From the character tables/ the number of times 
a given irreducible representation appears in the 
reduction of the matrices representing the group 
operations on the 2J + 1 states spanning the 
manifold of constant angular momentum may be 
obtained, and Bethe4 gives these reductions for the 
various point groups. This immediately gives one 
the number and degeneracies of the levels into 
which an initially (2J + 1) degenerate level is split 
when the symmetry of a spherically symmetrical 
Hamiltonian is lowered by the introduction of a 
potential invariant only under the operations of a 
lower symmetry group. The actual splittings must 
be found by solving secular determinants involving 
the matrix elements of the perturbing potential 
between the various (2J + 1) zeroth-order de­
generate states. The dimension of the secular de­
terminant of the levels of symmetry type r i is 
equal to the number of times r i appears in the 
reduction of the original (2J + I)-dimensional 
matrices. Thus for the lowest level of H03 +, which, 
according to Hund's rule, has J = 8, no cubic sym­
metry type will appear more than twice in the 

431 
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TABLE I. Cubic symmetry types corresponding to integral 
total angular momentum. Following the symbol for the 
irreducible representation, the prototype function(s) and 
then the symmetry functions in terms of even m states, 
m, (Eq. 1), are given, it being understood that instead of 2 or 4 
for m, any multiple of 4 may be added (or subtracted). 

r 1 : x' + y' + z': 4, + 4_, + 4x + 4_. + 4. + 4_. 
r2: x·y·z: 2. + 2_. - (2x + 2_",) + 2. + 2_. 
r3: Z2 - Hx2 + y2), X2 - Hz2 + y2): 

2. + 2_. + 2. + 2_., 2. + 2_. - (2. + 2_.) 
or 4. + L. - H4. + L. + 4. + L.), (4. + Lx) 

-H4.+L.+4.+L.) 
r.: z, x, y: 4. - 4_., 4. - 4-Zl 4. - 4-. 
ro: XY, YZ, ZX: 2. - 2_., -(2. - 2_.),2. - 2_. 

17 -dimensional space spanned by the eigenfunctions 
of J. If, rather than first choosing 17 functions of 
good symmetry types, one sets up the secular de­
terminant on the basis of states of good J., one will 
be faced with the solution of four- and five-dimen-
sional secular determinants. 

II. SYMMETRY FUNCTIONS OF THE CUBE 

One cannot hope to find simple descriptions of 
cubic symmetry functions in terms of the eigen­
functions of J ,. 

Let it be understood that throughout this note 
we refer to states of good total J, and that we seek 
to construct states of good cubic symmetry types 
from these states. Let m. stand for an eigenfunction 
of J. with eigenvalue m; then 

TABLE II. Cubic symmetry types for odd m, mls. 

r.: z, x, y: I. + L. + 1. + L., 
L. - I, - il. + iL., iL. + il. - iL. + il. 
3. + 3-x + 3. + 3_., 3_. - 3. + ~"3. - i3_., 
i3_. - i3. + i3_. - i3x 

ro: xy, yz, zx: I. + Lx - (1. + L y), 
I, - L. - i(1. - L.), i(l, + L. + L. - Ix) 
3. + 3_. - (3. + 3_.), 3. - 3_. + i(3. - 3_.), 
-i(3. + 3_. + 3-x - 3.) 

Integral J 

One easily finds that for integral J, the character of 
the six states belonging to a given m is [6, 2 cos (m1l"), 
2 cos (mt1l"), 0, 0] corresponding to the five classes 
C1 to C5 of Bethe.4 From Bethe's character tables 
we then know that the six states belong to r 4 + rs 
if m is odd; r 2 + ra + ra, if m = 2 (mod 4); 
r 1 + ra + r 4, if m = 4 (mod 4). In some cases 
the six states mi will not all be linearly independent 
and some of the symmetry types constructed from 
them will be identically zero. For example, if m = 0, 
only three of the states are linearly independent 
(since O. = 0_. if J is even; O. = -0_. if J is odd). 
From Table I, discussed below, it is seen that if 
J is odd, 0., Ox, 0., are of symmetry type r 4 , while 
if J is even, Ox + Ou + o. is of symmetry type r 1 

and O. - HOx + 0.), Ox - HO. + 0.), are of sym­
metry type r a• 

We show in the appendix that for integral J 
(1) any eigenfunction of J. may be expressed in terms 

and similarly mx , m_u, etc. stand for eigenfunctions of the even eigenvalued eigenfunctions of J" J z , 

of J z, J -u, etc. In order to fix the phases, we take and J.. In Table I we present symmetry types 
mz = Rum" m. = R.mx, m_z = R.m., m_. = R.m_x, constructed from the functions m" mz, etc. where m 
and m_. = R;m., where Ru and R. are h "rotators" is even, it being understood that instead of 2 and 4 
about the y and z axes: in the table, we may add or substract any multiple 

J.m. = m·m., 

of 4. In Table I, following the symmetry type symbol, 
R.f(xyz)"= f( -z, y, x), 

R.f(xyz) = fey, -x, z). 
(2) we give prototype function (8) which transforms 

The six states m i , where i ranges over the plus 
and minus cartesian coordinates, transform among 
themselves under the group of operations which 
carry a cube into itself; hence they span each of the 
cubic symmetry function spaces an integral (in­
cluding zero) number of times. 

y y 

+ 

FIG. 1. The rel-
+ evant propertil)s of 

+ x 4. and 2. entering 
into the construc-

+ tion of Table I. 

4z 2z 

according to the symmetry type; then we give the 
linear combination of the mi which transform 
properly (that they do transform like the prototypes 
is easily verified for R. and R. which generate the 
cubic group). 

The functions given which transform like r a are 
not orthogonal (they are more symmetrical in ap­
pearance than the orthogonal functions). If we call 
these two functions 'Y~ and 'Y~, then we may obtain 
the orthogonal functions (which are a basis for ra) 
"I! = "I~, and "I; = 3-t("I~ + 2"1D; for the prototypes 
this gives "I: = H3z2 - r2), "I; = (!)!(X2 - y2). It 
is easier to exploit the symmetry to obtain relations 
among matrix elements in the "I~, "I:, basis than in 
the "I:, "I; basis, which is why we prefer to work 
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TABLE III Half-odd integral angular momentum cubic symmetry types. After the symbol for t~e irreducible r~presentation, 
;e give the prototype spinors after which the cubic symmetry types in terms of the m. s (Eq. 1) are glVen. 

m = ±! mod (4) m = ±! mod (4) 

r '1' '). 6· 2", 2". 
i, -i): 

r 7 : xyz I i, !): 
xyx !, -i): 

F(!1I", m) r8: 1, 1): 
~, i): 
!, -!): 
!, -!): 

""3-t[2 Im,,,. - F(i1l", m)] 
3-1[2Im •• - F( -i1l", m)] 
""F( -!11", m) 

m •• - 2-tF( -i1l", m) 
",,[m ... - 2-tF(!1I", m)] 
m .. , + 2- tF(!1I", m) 
±3 i2-IF(1I"t, m) 
312-IF( -11"1, m) 
±[m •• + 2-tF( -!11", m)] 

with the nonorthogonal basis, leaving the transfor­
mation to the orthogonal basis to the last step in a 
given calculation. 

The only properties of 4. and 2. that have been 
utilized in the construction of the functions is that 
4. is invariant under !1r rotations about the z axis, 
and that 2. changes sign under rotation bY!1r round 
the z axis (Fig. 1). Any functions which transform 
thusly under h notations about the z axis could be 
substituted for the functions in Table I to provide 
good cubic symmetry functions. The results in 
Table I could be obtained from the idempotent 
reduction method,S but they are most easily ob­
tained from inspection of Fig. 1 and the prototype 
functions of Table I. 

Now if for m. in Table I we substitute Y7(e, cf» 0:: 

(x + iy)mp7(z) and similarly for m .. , etc. remember­
ing that m .. = R.m, and R.f(xyz) = f( -z, y, x) 
then we shall obtain VonderLage and Bethe's6 
"Kubic Harmonics." Since the P";'s are tabulated, 
with the aid of Table I, we may write the Kubic 
Harmonics immediately. This, however, is not use­
ful; for practical calculations, the cubic symmetry 
functions as given in Table I in terms of the sym­
metry, functions of the sphere are in the best form. 

It may sometimes be useful to write the cubic 
symmetry types in terms of the odd m, m/s. The 
reduction is given in Table II. 

6 Generally the reduction of a function or a set of functions 
to symmetry functions of a group may be carried out by the 
idempotent or projection operator technique [see, e.g., 
D. E. Littlewood, The Theory of Group Characters (Oxford 
University Press, New York, 1940) Chap. IV, or a more 
modern work, M. Hammermesh, Group Theory (Addison­
Wesley Publishing Company, Inc., Reading, Massachusetts, 
1962) p. 111]. It was brought to the author's attention by 
the r~feree that P. H. E. Meijer, Phys. Rev. 95, 1443 (1954), 
has given an exposition of how t~,,: met~od is ~ed, tog~t~er 
with formulas and tables to facilitate Its use In obtalmng 
the symmetry functions for var~oUB point groups, .i~cluding 
the cubic group. The method given here for obtalmng and 
representing the cubic symmetry functions is different and 
perhaps easier to use than the previous method. 

6 F. C. VonderLage and H. A. Bethe, Phys. Rev. 71, 
612 (1947). 

Half-Odd Integral J 

These cases are somewhat more complicated than 
the integral J case. The prototypes are spinors 
rather than simple polynomials as in the case of 
integral J, and the cubic symmetry types cannot be 
written so immediately as was possible in Table I. 
The character of the six functions m. corresponding 
to the eight classes4 E, R, C2 , C~, C~', C4 , C~, C~' 
of the double group are (6, -6, 0, 2 cos (m!1r) , 
-2 cos (mh), 0, 0, 0). Then from the characters 
of r e, r 7, and r g ,4 we find that the six functions m. 
transform as r6 + r g if m = ±! (mod 4), and as 
r7 + r g , if m = ±i (mod 4). Only r6 appears 
(once) in the reduction of the two J = ! states, and 
only rs appears (once) in the reduction of the four 
J = i states, and we may take the two functions 
IJ, J,) = It, ±t), and the four functions IJ, J,) = 
Ii, ±i), Ii, ±t) as prototypes for these two sym­
metry types. r7 = r 2 X re and thus we may take 
x·y·z I!, ±!) as prototypes of r 7. We now take 
the phases of the functions IJ, m) in the standard 
way such that 

(J .. ± iJ.) IJ, m) 

= [J(J + 1) - m(m ± 1)]\ IJ, m ± 1). (3) 

Then, according to Wigner,7 

(4) 

where 

d~.(!1r) 

= L: 2-;[j + m! j - m! j + q! j - q!]!(-)' , 

X [(j - q - t)! (j + m - t)! t - m + q! ttrI, (5) 

where the sum is over integral (plus and minus) t's. 
Table III gives the spinor cubic symmetry func-

7 E. P. Wigner, Group Theory (Academic Press Inc., 
New York, 1959), p. 167. 
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TABLE IV(a). The number of times a given irreducible 
representation of the cubic rotation group appears in the 
reduction of the (2J + I)-dimensional matrices belonging to 
integral J. 

J r, r2 ra r4 r. 

0 I 0 0 0 0 
I 0 0 0 I 0 
2 0 0 I 0 I 
3 0 I 0 I I 
4 I 0 I I I 
5 0 0 I 2 1 
6 1 1 I 1 2 
7 0 1 I 2 2 
8 I 0 2 2 2 

tions. That they do transform properly (like the 
prototype spinors) under Ru and R. may be verified 
by using Eq. (5), Eq. (2) and the definitions preced­
ing it, and the relations Rum, = m", Rum" = m_., 
R.mu = exp [- im!1r]mu, Rum-u = exp [+ im!1r]m_u, 
Rum_" = exp [-im1r]m., Rum-. = -exp [im1r]m_", 
R.m_u = -m" (for spinors), which come from the 
group multiplication table and Eq. (1). 

III. DISCUSSION AND APPLICATIONS 

In Table IV we give the number of times a given 
irreducible representation of the cubic-rotational 
group appears in the reduction of the 2J + 1-
dimensional matrices belonging to a given J.4 By 
means of Tables I and II, or III, and Tables IV, 
one may immediately reduce the 2J + 1 states 
belonging to a given J to cubic-symmetry types. 
One may express these functions in terms of the 
eigenstates of J. by means of the expression for 
d~.(h) given in Eq. (5), but this is not generally 
useful except for small J values. 8 

If now V is an operator which is invariant under 
the cubic-rotation group, its matrix elements be-

TABLE IV(b). The number of times a given irreducible 
representation of the cubic rotation group appears in the 
reduction of the (2J + 1 )-dimensional matrices belonging to 
half-odd integral J. 

J ra r7 rs 

1/2 1 0 0 
3/2 0 0 1 
5/2 0 1 1 
7/2 1 1 I 
9/2 1 0 2 

11/2 1 1 2 
13/2 1 2 2 
15/2 1 1 3 

s The expressions obtained from Table III for 'Yo and 
'Ys (bases for ro and rs) are obviously clumsy expressions 
of these functions in the cases of J = land J = !, respectively. 

TABLE V. Integral J coefficients for Eq. (6). 

n (mod 4) m (mod 4) 0< .. a.i 0<", 

r, 0 0 6 6 24 
r 2 2 2 6 6 -24 
ra 0 0 3 3 -6 

2 2 4 4 +8 
0 2 -2 -2 12 

r4 0 0 2 -2 0 
r. 2 2 2 -2 0 

tween symmetry function (Tables I and III) are 
given by 

(-/(n), V'Yi(m» = azz(n., Vm.) + a.z(n., Vm_,) 

+ a.xCn., V m,,), (6) 

where 'Y(i) (n) and 'Y'(m) are two functions of the 
same symmetry type (unnormalized) selected from 
Table I or III. The a's and relevant nand m's are 
given in Table V. The corresponding table for the 
spinor symmetry functions would be unnecessarily 
large; we merely note the following relations which 
may serve to reduce the matrix elements of V be­
tween spinors of the same symmetry type to the 
form of Eq. (6): 

(F(p, n), VF(p, m)) 

= 4{(nz, Vm.) - exp [i(n1r + 2p)](n., Vm_ z) 

+ 2 cos [p + (m - n)!1r](nz, Vm,)}, (7) 

(n: z, VF(p, m) = 4(n:., V m,,), (8) 

(F(p, n), Vm. z) = 4(nx , Vm. z), (9) 

(n", Vm_.) = (n., Vm,,), (10) 

(n_z, Vmx ) = (n", Vmz) 

= exp [i(m - n)1r](n., Vm,,), (11) 

where F(p, n) is defined in Table IV(a). 
As an example, we consider the splitting of the 

ground state of Tb3
+ or Tm3

+, each of which, accord­
ing to Hund's rule, have J = 6 when the ions 
are placed in a crystal field of cubic symmetry. 
According to Table IV (a) , r 1 to r 4 are each repre­
sented once, and r 5 twice. For the eigenfunctions 
we may take (Table I): 

1'1 = 2V2/3 (O:e + Oy + 0.), 

'Yi = (! 00)(6. + 6_. - 6:e - 6- x + 6y + 6_.), 

'Y~ = (4/ V66)(6. + 6_. - 6. - 6_,), 

'Y~ = (4 z - 4- z)/V2, 
(12) 
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'Y~(2) = (2. - 2_.)/ vi 
The normalization follows from Eq. (6) and Table V 
with V = 1. For example, 

(Oz + 0. + 0., Oz + 0. + 0.) 

= 3[1 + 2(0,,0%)] = 9/8. 

Where we have used the fact that 

d~. ~ H";">TH;:] [: ~ :Jl 
which may be derived from Eq. (5). The two 1'5 

functions given are not yet the eigenfunctions; the 
cubic potential will have matrix elements between 
them. 

For the cubic potential, we have from Tables 
IV(a) and I: 

V = Vo + V4 + V6 + ... , 
V4 = L !iri ) [P4(xJr i ) + P4(yJr;) + P4(zJri )] 

~ B[J! + J! + J! - tJ(J + 1)(3J2 + 3J - 1)] 

~ B{lo[35J! - 30J(J + l)J! + ... ] 
+ i(J~ + J~)}, (13) 

Vs = L fa(ri)[P6(xJri) + PS(yJri) + P6(ZJri)] 
; 

~ D[231(J~ + J~ + J~) 
- 315 J(J + I)(J! + J! + J;) + ... ] 
~ D{ [231J: - 315J(J + l)J! + ... ] 

- ~I J~[ll J.(J, + 4) + 50 - J(J + 1)] 

- ~1 [llJ,(J. + 4) + 50 - J(J + I)]J~}. (14) 

Where the sums in (13) and (14) refer to the sum 
over the coordinates of the 41 electrons, and the 
arrows indicate the "operator equivalents" of 
Stevens,9 Vo does not split the level, and V 8 and 
higher have zero expectation value for f electrons. 
Making use of the operator equivalents and Table V, 
we have 

('/(6), V'Y5(6» = (6" V6.) , 

(1'3(6), V'Y3(6» = (6., V6.) 

+ 2[1 + 2(6., 6z)r
1(6., V+6z ), 

(15) 

(1'2(6), V'Y2(6» = (6., V6.) 

- 3[1 - 4(6., 6z)r\6., V+6z ), 

where V + refers to the part of V4 + V6 containing 
J;. Making use of the tabulated matrix elements 
of the operator equivalents,9 we obtain 

(6., V6.) = 3 X 99B + 22 X 7560 D, 

(6., V+6z ) = 2-{ (~) J(6Zl V+2 z) (16) 

= (27 X 55/64)[B + 16 X 21 X 35 D], 

which together with (6" 6z ) = 2-6 serves to evaluate 
the quantities in Eq. (15). The other four matrix 
elements required to obtain the splitting for this 
case (J = 6) may be obtained in the same manner, 
but we forego their computation. 

IV. CONCLUSION 

We have shown how, from the manifold of states 
of given J, (2J + 1) symmetry functions of the 
cube may be immediately obtained in terms of 
eigenfunctions of J z , J y , etc. We have shown how 
these functions may be used to compute matrix 
elements of invariants of the cubic group most 
expeditiously (usually), without expressing these 
functions in terms of the eigenfunctions of J •. The 
matrix elements of J(r 4) and higher-order operators 
are also conveniently evaluated in this representa­
tion, but they will be dealt with in a succeeding 
paper on the theory of the magnetic ordering of some 
rare-earth compounds. 

APPENDIX 

We prove here that the even-valued eigenfunctions 
of J z , J y , and J. are sufficient to represent the 
(2J + 1) eigenfunctions of J. for a given integer J. 

With the conventions of Eqs. (1) and (2) of the 
text, 

pz = R.p, = L dmvm,. (AI) 
m 

With the standard phases of Eq. (3), the d's are 
real and are given by Eq. (5). From the unitarity 
of the d matrix, 

Applying R. (Eq. 2) to (A2), 

m. = eim
!,. L dmoq., 

• 

(A2) 

(A3) 

9 K. H. W. Stevens, Proc. Phys. Soc. (London) 65, 210 and applying R. to (A3), 
(1952). In this reference are given the remainder of the 
expressions for the operator equivalents of P4 and P 6 which pz = L dvoe,(v-O)!r qy. 
we indicate by dots in Eqs. (13) and (14). 

(A4) 
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Substituting (A4) into (A2), 
- "d d i(,,-o)! .. m. - L.J m" ".e qu· (A5) 

".0 
We now see, on comparing Eqs. (A3) and (A5), 
that if m is odd, an odd q term of the sum in Eq. (A5) 
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is contributed to only by the even p terms in that 
sum, and furthermore the even p terms do not con­
tribute to the even q terms; therefore, 

(A 6) 
even 11 
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It is intended in the present series of papers to discuss explicit constructive determinations of 
the representations of the semisimple Lie groups SU" by an extension of the Racah-Wigner techniques 
developed for the two-dimensional unimodular unitary group (SU2). The present paper defines, 
and explicitly determines, a symmetric vector-coupling coefficient for the group SU ", These coefficients 
are utilized to construct a series of canonical invariants for SUn, of which the first 12 is the familiar 
Casimir invariant, and it is proved (by construction) that these invariants form a complete system 
of independent invariants suitable for uniquely labeling the irreducible inequivalent representations 
of SU,.. 

1. INTRODUCTION 

T HE fundamental importance of group theoreti­
cal methods in applications to physics has been 

clear since the pioneer researches of Weyll and 
Wigner.2 Of the important groups, the continuous 
compact groups (the semisimple Lie groups in 
particular) playa predominant role, as is clear from 
current applications in fields as disparate as ele­
mentary particle physicsa and the rotational model 
for nuclear structure' (Elliott's application of SUa). 

Despite the fundamental importance of the semi­
simple Lie groups, not too much has been done for 
these groups as a whole, regarding an explicit dis­
cussion of their representations, let alone any general 
treatment of the properties of these representations. 

This neglect has been largely due to a difference 

* Supported in part by the Army Research Office (Durham) 
and the National Science Foundation. 

t Summer Lecturer at the University of Colorado Summer 
Institute for Theoretical Physics, (Fifth Annual Series, 1962). 

1 H. Weyl, The Theory of Groups and Quantum Mechanics, 
translated by H. P. Robertson (Methuen and Company, 
Ltd., London, 1931). 

2 E. P. Wigner, Group Theory and Its Application to the 
Quantum Mechanics of Atomic Spectra, translated by J. J. 
Griffin (Academic Press Inc., New York, 1959). 

a R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, 
Rev. Mod. Phys. 34, 1 (1962). 

~ J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958); 
ibid, 562 (1958). 

in emphasis between a mathematician's approach 
to the subject and a physicist's approach, this dif­
ference being manifested most clearly in the great 
importance the latter attaches to the representations 
per se. The outstanding researches on the represen­
tations of the semisimple Lie groups, beginning with 
Frobenius, Schur, Cartan, and Weyl, have by and 
large been concerned primarily with the characters 
of the representations, rather than the representa­
tions themselves. Where the representations per se 
have been considered, the general procedure-follow­
ing Schur and Weyl-has been to exploit the close 
connection that exists with the symmetric group, 
thus utilizing the theory of the symmetric group 
as a technique for stUdying the Lie groups.5 

Such a procedure is of great elegance and leads 
to a canonical procedure for discussing the charac­
ters of the semisimple Lie groups. The most com­
plete treatment for the representations along these 
lines appears to be Littlewood's explicit construction 
of the representations by an extension of Frobenius's 
methods for defining invariant matrices.6 

5 H. Weyl, The Classical Groups (Princeton University 
Press, Princeton, New Jersey, 1946). 

6 D. E. Littlewood, The Theory of Group Characters 
(Clarendon Press, Oxford, England, 1950). 
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It is clear from these preliminary remarks that 
the subject under discussion is not only important, 
but has already received several classic treatments. 
Why then further discussion? The question is not 
frivolous, and there is a genuine reason. It is this: 
the methods used for the classic discussions of the 
Lie groups employ techniques quite foreign to those 
utilized by (mathematical) physicists. Global tech­
niques, which employ properties of the whole 
group have predominated, while the purely in­
finitesimal methods, which are the natural tools 
of the physicist (local interactions, complete set of 
commuting constants of the motion), have not been 
employed nearly as systematically. 

There is a very good reason for this neglect; 
namely, that the appropriate techniques had to be 
developed (by Wigner and by Racah) in their funda­
mental researches on the representations of the 
rotation group (including spin representations, i.e., 
SU2). It is the intention of the present series of 
papers to extend to the general unimodular unitary 
group, SU .. , the explicit constructive, predominantly 
algebraic, methods of Racah and Wigner, with par­
ticular emphasis on SUa and SU4 • As we shall see, 
the direct extension of the procedures to be de­
veloped here for SU,. is not possible for the general 
semisimple Lie group. For this important remark, 
I am indebted to Professor Racah. [N ole added in 
proof: Professor A. P. Stone has independently made 
the same observation (private communication).] 
Nonetheless, the present methods afford an indirect 
treatment of the general case, since an arbitrary but 
fixed semisimple Lie group may always be embedded 
in a suitable SUn. (A good example is the group G2 

which may be embedded in SU7 .) 

As Wigner has emphasized-and Racah also in 
his Princeton lectures7-that there are three prob­
lems standing in the way of this program. 

The first of these problems is the explicit con­
struction of all the invariants of the group in 
question. (The well-known Casimir invariant, the 
only invariant for SU2 , furnishes one general in­
variant; the task is to find the remaining 1 - 1 
invariants for a Lie group of rank 1.) 

Although the dominant weights furnish a unique 
designation of the irreducible inequivalent repre­
sentations, it is well known that the weights them­
selves do not afford a unique characterization of 
the states belonging to a given irreducible inequiv­
alent representation. This is the second problem 
posed by Wigner and by Racah: to determine suitable 

7 G. Racah, lecture notes, Institute for Advanced Study, 
Princeton, New Jersey, 1951 (unpublished). 

operators whose eigenvalues will uniquely charac­
terize the states of a given (irreducible inequivalent) 
representation. 

The third problem, which has been especially 
emphasized by Wigner, is the construction of 
matrices to reduce the (inner) Kronecker product. 
The major difficulty lies in the occurrence of groups 
which are not simply reducible. 8 Expressed dif­
ferently, the difficulty is that a given representation 
may occur more than once in the reduction, so that 
the reducing matrices are not uniquely determined 
by the group itself. 

It is the purpose of the present paper to give an 
explicit solution, for all SU", to the first of these 
problems. A second paper will detail an equally 
explicit solution to the "state-labeling" problem 
(again for SU,,), [Note added in proof: A brief sum­
mary of the main results of papers I and II has been 
presented in Phys. Letters, 3,69 (1962). A proposed 
solution to the 'simple reducibility' problem for 
SUs based upon these results has been given in 
Phys. Letters, 3, 254 (1963).] With these two ancil­
lary tasks accounted for, the proposed treatment of 
the representations of SU" now becomes possible; 
application to SUa and SU4 in particular is car­
ried out. 

In order to set the present discussion in the proper 
perspective, let us note that the emphasis here is 
strongly on the words "explicit" and "constructive". 
Were it not for this emphasis, the subject of the 
group invariants would otherwise have to be con­
sidered as solved implicitly by the researches of 
Killing, Cartan, and particularly Weyl, as long ago 
as 1894-1925. 

2. THE CASIMIR INVARIANT AND 
GENERALIZATIONS 

The infinitesimal generators {X.d of a semisimple 
Lie group obey the commutation rules: 

[XA' X B ] == XAXB - XBXA 

= L (ABC)Xc. (1) 
C 

The three-index symbols (ABC) are the structure 
constants of the group. Cartan's criterion for a semi­
simple Lie group is that the two-index symbols 

gAB = L (ABlJ)(BCB) (2) 
jje 

have a nonvanishing determinant. The gAB has the 

8 E. P. Wigner, Am. J. Math. 63, 57 (1941); G. W. Mackey, 
Pac. J. Math. 51, 730 (1950); W. T. Sharp, CRT-935 (ABCL 
1098) Sept. (1960); E. P. Wigner, lecture notes, Princeton 
University, Princeton, New Jersey, 1955 (unpublished). 
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property that it may be used to define metric 
tensors LB gABg BC 

= o"A c suitable for raising and 
lowering indices. Using this, Casimir constructed a 
general invariant 

(3) 

which may be easily shown to satisfy the defining 
equation for an invariant 

(4) 

A generalization of the Casimir invariant im­
mediately suggests itself, namely 

* '"' -c -c In == £.... (AIBI ')(A 2CI ') ... 
all 

indices 

X (AnC~')XA'XA' '" xAn. (5) 

The I~ are seen to obey Eq. (4). As pointed out by 
Racah,7 this explicit construction of invariants 
(g = 12 , I~, ... I~) is not satisfactory since there 
exist inequivalent irreducible representations that 
have the same values for all I~. Going further, 
Racah9 discussed a method whereby the desired l 
invariants (for a semisimple group of rank l) could 
be obtained from the invariants of the adjoint 
group.l0 

Racah's method consisted in noting that Eq. (4) 
is equivalent to the definition of the characteristic 
differential equation of the invariants of the adjoint 
group. Since Killing and Cartan had shown how to 
obtain invariants of the adjoint group, and since 
the number of independent invariants of the adjoint 
group is equal to the rank l of the original group, 
the first problem may be considered solved. Since 
Racah's paper is relatively inaccessible,11 and is, 
moreover, so brief as to be difficult to understand 
fully, it might be useful to discuss Racah's contri­
bution in some detail here. 

9 G. Racah, Rend. Atti. Accad. Naz. Lincei 8, 108 (1950). 
10 For convenience, let us note that the adjoint group is de­

fined in terms of the mapping of the group into itself, induced 
by conjugB:tion.wi~h the group element x. That is, x: g -> g' = 
x-lgX. For mfimteslmal elements of the group, the above trans­
formation induced by x, defines a transformation in the space 
of the parameters, that is, for g = E + LA PAXA + 0(p2), 
the mapping x: g -> g' induces PA -> PA'. The transformations 
P -> P' constitute the adjoint group, A. 

The transformation x also provides a representation of 
the original group G, the adjoint representation. For infinitesimal 
elements, this gives a representation of the 'infinitesimal group' 
whose elements are the {XA }. That is, 

x: {XAI -> {XAI' "" {[Xx, XAll. 

11 I am indebted to Professor B. Bayman for an English 
translation of this paper, and to Professor U. Fano for a 
discussion on both the original and translated papers. My 
thanks are due also to Professor Racah for the favor of further 
interpretive remarks as to the meanings intended. 

Let US first consider Killing's method. 12 Killing's 
procedure utilized the characteristic equation de­
fined by the adjoint representation. That is, 

det (L: XA(ABc) - p o~) = O. (6) 
A 

[The determinant is defined in the form 

det Aii = L: (- )P(A i ,IA i • 2 
pe rmu ta tiona 

(ilo··i n ) 

so that the fact that the X A do not commute is 
properly considered.] Eq. (6) can be shown to be 
invariant under all X A. Since p is arbitrary, this 
implies that each power of p is separately an in­
variant. 

To discuss the invariants defined by (6) let us 
employ the theorem 13 that the coefficient of pi in 
the characteristic polynomial det (D - pI) = 0 
is (_)i tr (D[d-il), where d is the dimension of D 
and tr (D m) is defined as 

TI 1 0 0 

tr (D[ml) (m!)-I T2 TI 2 0·· 0 
-

Tm_
1 Tm- 2 m-l 

Tm Tm_
1 TI 

with the further definition, that Tn is the trace of 
the nth power of D, i.e., Tn == tr (Dn). 

The trace of the powers of D are in the present 
case none other than the invariants previously de­
noted by I~. We have shown therefore,14 that the 
invariants defined by the adjoint representation are 
algebraic (polynomial) combinations of the in­
variants I~, and are consequently not satisfactory 
for distinguishing the inequivalent irreducible repre­
sentations. ls 

In his paper, Racah noted that, besides Killing's 
determination, one might use Cartan's generaliza­
tion which employs in place of the adjoint representa­
tion, the representation of the infinitesimal group 
induced by an arbitrary representation of Racah's 
essential contribution in his paperl6 was an enumera-

~2 G. Killing! Math. ~nn. 31, 33, 34, 36 (1888-1890). 
This reference IS quoted m Weyl, reference 5, and Racah 
reference 9. ' 

13 p. ~. Littlew.o<!d, reference 6, Chap. Xi J. S. Lomont, 
Appltcattons of Ftntte Groups (Academic Press Inc., New 
York,1959). 

14 Qu~stions concerning the proper ordering of the non­
commutmg operators X A can be avoided by a lengthier 
treat~ent, or ca~. by avoided compl.etely by dealing with 
n1!mencal quantities and symmetnzing the invariants, 
With respec.t to the X A , after they are determined (Racah's 
procedure, m fact). 

U The recent paper of Stone (see ref. 17) may be 
interpreted as establishing this result also. 

.16 I am indebted to Professor Racah for a discussion of this 
pomt. 



                                                                                                                                    

REP RES E N TAT ION S 0 F THE S E MIS IMP L ELI F ELI E G R 0 UPS. I 439 

tion of suitable representations which will suffice to 
define (by the Killing-Cartan procedure), acceptable 
invariants for all the semisimple Lie groups. 

Since, however, we are interested in an cxplicit 
construction of the invariants, Racah's paper needs 
to be supplemented by further calculation. The ulti­
mate goal is, of course, to utilize these invariants to 
construct all the inequivalent, irreducible, repre­
sentations. 

Fortunately, as is shown in the next section, there 
is a wholly different procedure available for the SUn 
group which leads quite immediately to the desired 
goal. 

Before turning to this demonstration, let us re­
mark that the reason why the Killing invariants fail 
to be acceptable is in some ways more interesting 
than the problem of the invariants itself. Since this 
point is not directly of concern in the next sections, 
further discussion has been relegated to Appendix B. 

3. THE CONSTRUCTION OF INVARIANTS FOR SUn 

Before proceeding with this construction, it is 
useful first to introduce a very convenient canonical 
basis for the generators {XAI of the group SUn. 
This basis is a sort of hybrid, and combines both the 
basis ei; used by Weyl, and the basis (introduced 
by Racah) using the Wigner coefficients. 

Every n X n unitary matrix may be written in 
the form U = exp (iH), where H is Hermitian. In 
the vicinity of the identity, U becomes U '" 1 + iH. 
Parametrizing H in terms of the parameters Pi; 
with Pi~ = P;i, we have 

H = L PiiCii + L Pi;Ci;; (7) 
i¢i 

where Ci; is the matrix consisting of unity in the 
(ij)th position and zeros elsewhere. 

The unimodular restriction is the requirement that 
det U = 1; this is equivalent to requiring tr H == 0, 
mod (21T) , and we shall identify 0 and 21T as the 
same point in parameter space. The unimodular re­
striction on Eq. (7) is a requirement that Li Pii = 0, 
so that the number of independent parameters is 
n2 

- 1. Rather than introducing a redundant param­
eter (as is conventional), let us define a new basis 
hi for the diagonal elements 

(8a) 

with 

Ai;) == [e i ~ 1 Y 

X (n~ll-ntlioln~11-n~1)J, (8b) 

where (... I ... ) is a Wigner coefficient. The X's 
have the useful properties expressed by the equations 

n-l 

L A;ilA~il = Olm, 
i=O (8c) 

n 

L xiilx;o = Oii' 
1-1 

which are a consequence of the properties of the 
Wigner coefficients. 

[It should be noted that the particular element 
ho is a multiple of the identity (ho = 2-1n-1E). In 
order to obtain the orthonormality properties ex­
pressed by Eq. (8c), it is necessary that the index i 
run over 0 to n - 1; that is, ho is considered a 
member of the algebra. This is always possible, 
since the identity always occurs in the group; how­
ever, ho is not a generator for SUn (This is just the 
unimodular restriction.) This logical distinction is 
important, but should not cause confusion if not 
stated explicitly in all cases below.) 

Let us further introduce the customary designa­
tion, c" == (2n)-!c;; where a denotes now the index 
pair (i, j). The index pair (j, i) then denotes e_ a • 

The structure constants are determined by the 
commutation relations of the generators hi and ea , 

collectively denoted as XA' Thus one finds 

[hi, hi) = 0, (9a) 

[hk , ca ) = (2n)-~(A:k) - A;kl)e a == akea, (9b) 

[e a , e~) = (2nr!e n if a = (kl), (3 = (lm), l' (km) , 

[e a , ep) = - (2nr!ey, 

if a = (kl) , (3 = (mk), 'Y = (ml), (9c) 

[e a , e~) = 0 otherwise (and (3 ~ -a), 

lea, e- a) = L aihi' (9d) 

These equations determine the canonical form of 
the structure constants, (ABC). (The notation is 
that lower-case Latin letters denote h's (and where 
a numerical designation is used, a Roman numeral) 
while the lower-case Greek letters (and European 
numerals) denote e's. A capital Latin index is used 
to denote the h's and e's collectively, i.e., XA') The 
metric, Eq. (2), has the canonical form, gAB = 0;/, 
with the usual convention that h_i = hi' (It was 
to obtain this form that the irritating normalization 
(2n)-1 had to be introduced.) Under Hermitian 
conjugation, the generators behave as 
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(10) 

A representation of the infinitesimal group is then 
given by the correspondence 

ea -t E a , hi -t Hi, (collectively XA -t X A), (11 a) 

which implies that the correspondence extends to the 
commutators 

[XA, X B] = L: (ABC)Xc. (llb) 
C 

The finite elements of a representation G are then 
the matrices 

(12) 

It is customary to associate with the structure 
constants Ciaa) == ai, the vector 0:, whose "space" 
is labeled by the hi (or Hi)' This leads to the 
vector diagram of Cartan. It is useful to note that 
L:n (ABD)gDc = (ABC) is antisymmetric in all 
indices, and A + B + C = 0, with the convention 
i f""ooJ O. 

Let us return now to the task of constructing 
invariants for SUn. We may regard Casimir's con­
struction [Eq. (3)], not so much as furnishing an 
invariant, but rather as a prescription for obtaining 
an invariant if given two "vectors," {X A I and {X B } • 

This suggests that we agree to call a "vector with 
respect to SU .. ", any set of operators {Y A} which 
obey the commutation relations 

[XA , YB] = L: (ABc)yc, (13) 
C 

where {X,d are the generators of SUn. [Naturally, 

One solution to Eq. (14) is immediate-namely, 
the structure constants themselves.17 It is precisely 
this property that underlies the generalized Casimir 
invariants I~. 

The content of the present paper is the assertion 
that there exists a second, symmetric, solution to 
Eq. (14), which is defined, in analogy to the struc­
ture constants themselves, directly from the repre­
sentation given by the Ic a , hil. In particular, the 
explicit definition of the symmetric coupling coeffi­
cients, [ABC], is given by the anticommutator: 

(15) 

[Note that in Eq. (15), the sum includes ho, i.e., 
the index C includes i = O. Confer also the remarks 
after Eq. (8c).] 

For the SUn group, the coupling constants 
[ABC] == L:D [ABD]gDc are given by the following 
equations: 

[ijk] = [2(2i + 1~(2j + 1) J\iOjO I kO) 

X W(n - 1 . n - 1 '. n - 1 k) 
2 ~ 2 ], 2 ' 

ria - a] 

= (2nf!(A~i) + X;:»), a = (lm) , l;c m, 

= (2nf', 0: + ~ + "( = 0, 1';C O. 

[W(· .. ) here denotes the Racah coefficient]. 

(16a) 

(16b) 

(16c) 

The coefficients [ABC] have a number of general 
properties: 

for a particular representation, the matrices must (a) 
all have appropriate dimension, but we would prefer 
to regard Eq. (13) abstractly.] (b) 

[ABC] = 0 unless A + B + C = 0, 

[ABC] is totally symmetric. 

It is immediately obvious that Eq. (13), (and its The proof that for SUn, the symmetric coupling 
evident generalization to tensors in SUn) is simply coefficients given in Eqs. (16) do indeed define a 
an extension of those ideas that stem originally from coupled vector according to Eq. (15), which satisfies 
the work of Pauli and Guttinger, from the Wigner- the definition of a vector given by Eq. (13), is carried 
Eckart theorem, and from Racah's definition of out in an appendix. The method is by straightforward 
tensor operators. substitution, and no doubt a more economical proof 

Given two such vectors, {Y A} and {Z A}, Casimir's could be devised. 
construction guarantees that the combination 
L:AB gABy AZB is an invariant under the generators 
IXAI of SUn. The next step is equally clear: Given 
two such vectors, how can one construct a third 
vector? In other words, what are the vector-coupling 
coefficients, denoted by [ABc], such that I W A J, 
defined by 

Wc == L: [ABc]yAZB, (14) 
A.B 

shall be a vector, if {Y A I and {Z A I are vectors. 

It is now a straightforward matter to construct a 
series of invariants, In. Such a series begins with 
Casimir's invariant 

(17a) 

17 A. P. Stone [proc. Cambridge Phil. Soc. 57, Part 3, 
46ff (1961); ibid, 469 (1961).] has independently defined 
tensor operators under general semisimple Lie groups. 
His work is rather closely related to the antisymmetric 
solution to Eq. (14) discussed in the text. 



                                                                                                                                    

REP RES E N TAT ION S 0 F THE S EM I S IMP L ELI F ELI E G R 0 UPS. I 441 

proceeds to a third-order invariant 

Ia == L gABX Ax1d
) 

AB 

L [ABCjXAXBXO , (17b) 
ABC 

and a fourth-order invariant 

14 = L [ABC][DE - CjXAXBXDXE , etc. (17c) 
ABCDE 

For the SUn group there exists only (n - 1) 
independent invariants, whose order is 2, 3, '" , n. 
Thus the series of invariants given in Eq. (17) neces­
sarily must become redundant after the invariant In 
is reached. In order to prove that the series of in­
variants given in Eq. (17) is a suitable basis for the 
(n - 1) invariants of the SU" group, we must 
demonstrate that the invariants 12 ... I" exist, 
and are independent. This is done in the following 
section. 

4. PROOF OF THE SUITABILITY 
OF THE INVARIANTS I,. 

The researches of Weyl,18 of Coxeter/ 9 and of 
Racah7 have demonstrated some remarkable proper­
ties that must be possessed by the invariants of 
semisimple Lie groups, of their connection with the 
symmetry properties of the vector diagram, and of 
the invariants of the symmetry groups of the funda­
mental region of the reflection groups that define 
these vector diagrams. 

The symmetry group CWeyl's S) of the funda­
mental region of the SU" group is a group of order 
n!, the complete symmetry group of the Euclidean 
simplex, P".20 This group 16 is defined by the abstract 
generator and relations 

R~ = (RiRj)S = E 

(i ¢ j; i = 1,2, ... ,n - 1), (18) 

or by Coxeter's graph with n - 1 nodes: 
.-e-e ...• - •. 

of the group, and (2) Lj mj = number of reflections 
that generate the group. Moreover, the degrees of 
the basic invariants19 of S are mj + 1. 

If we note one further general propert/ of the 
invariants of a semisimple Lie group, the connection 
between the invariants of S and of G becomes clear. 
This is the property that the nth-order invariant 
of the group G when evaluated in terms of the highest 
weight A, becomes, under the substitution A -+ 

A - ! L+ .. a == M, an invariane1 of the group S. 
Since, however, this substitution is equivalent to 
considering only the highest-order terms in the 
invariant-that is, only the terms in the H's alone­
we need only show that the In when restricted to Hi 
define the nth-order invariants of S. This is still a 
sizeable task. 

Upon restricting the invariants In to the terms 
involving the Hi alone-that is, the generation of 
the corresponding invariants of the group S---one 
finds that the commutability of the H's allows the 
replacement: Hi ~ Ai (the ith term of the dominant 
weight), and the following forms result: 

12 -+ J2 = LA:, (19a) 

Is -+ J 3 = L [ijkjAiAjAk' 
iik 

14 -+ J 4 = L [ijk][klm]AiAjA/Am, 
iiklm 

In -+ I n = L [iji2jjj[jli3j2j[j2i4ja]'" 
all 

indices 

(19b) 

(19c) 

X [j"-2i"-lin ]Ai.Ai, ... Ai.' (19d) 

These invariants are quite complicated to discuss 
in the form in which they appear in Eqs. (19). We 
may, however, avail ourselves of the definition of 
the [ijk] to put these results in a more tractable 
form. That is, we utilize Eq. (15), and the com­
mutability of the hi' to write first 

2hihj = L [ijk ]hk , (15') 
• The characteristic roots of this group have the 

exponents mj = 1, 2, ... n, which obey the general and then, using Eqs. (8), 

properties: (1) The product IT,. (1 + mj) = order [ijk] = 2 tr Chih,.h
k
). (20) 

18 H. Weyl, lecture notes, The Institute for Advanced 
Study, Princeton, New Jersey, 1935 (unpublished); E. 
Cartan, Bull. Sci. Math. 2, 49 (1925). (This reference is 
quoted in Weyl, reference 18a) 

19 The researches of Coxeter referred to, span a number 
of years. A complete referencing (and discussion) is contained 
in the Ergebnisse series [H. S. M. Coxeter and W. O. J. Moser, 
Generators and Relations for Discrete Groups (Springer-Verlag, 
Berlin, 1957), Vol. 14, Chap. 9]. See also the paper by H. S. M. 
Coxeter, Can. J. Math. 9, 243 (1957) and the recent paper by 
H. S. M. Coxeter, Arch. Math. XIII, Fasc. 1, p. 86, (1962). 

20 H. S. M. Coxeter, Regular Polytopes (Pitman Publishing 
Corporation, New York, 1947). 

Introducing this result into Eq. (19b) for Ja, we 
find that this invariant may be written in a very 
suggestive form: 

J 3 = 2 tr (2: hihjhkAiAjAk)' (21) 
iik 

It is apparent that one should introduce a notation 

21 The validity of this property in the form stated is not, 
in fact, essential to the present proofs. 
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for the sum Aih.: we let 

A == 2: Aihi , (22) 

and then J a assumes the form 

J a = 2 tr (Aa). (21') 

It is quickly seen that J 2 = tr (A 2
), using the 

properties expressed in Eqs. (8). The remaining in­
variants are, however, not in this simple form. For 
example, one finds that 

strate then that the Jacobian of the set Kn possesses 
this remarkable property. 

The (diagonal) matrix A has for its elements n 
linear forms in the components of the weight vector 
A. Only n - 1 of these linear forms are independent, 
however. Rather than deal with the components A, 
directly, it is expedient to use the multiplicative 
property of the Jacobian to deal directly with these 
linear forms. Defining the linear form that appears 
in the ith diagonal of A as fiCA), one has 

J 4 = 4 tr (A4) - 4(J2)2. (19c') Ai. == f;(A) = 2: A;A;il, i = 1 ... n - 1, (24a) 

The difficulty this poses is easily remedied, since the 
introduction of lower invariants does not affect the 
suitability of the I n as a basis. Similarly, the numeri­
cal factors are not essential. We therefore replace 
the J n by the equivalent set K n , defined as 

; 

n-I 
Ann = - 2:fi' (24b) 

i=l 

using Eqs. (8a) and discarding the factor (2n)-! 
as irrelevant. The desired Jacobian is then 

(23) a(K2Ka'" Kn) 
The proof of the suitability of the K" will be a(AI A2 ••• An-I) 

demonstrated if we show that the Jacobian of the 
invariants, K", with respect to the weights, Ai, 
does not vanish. One may, however, prove a much 
more interesting result which explicitly illustrates 
a theorem of Coxeter.19 Coxeter has shown that the 
Jacobian of the invariants of the general irreducible 
finite groups of the form of Eq. (18) factorizes into 
2: m; [=!n(n - 1) for SUnllinear forms, which 
when equated to zero, give the reflecting hyper­
planes that generate S. It is sufficient to demon-

II + 2:, 
- 1 a(K2Ka .. , Kn) J==, a(fd2 ... In-I) 

= 12 + 2:, n. 

a(K2 ... Kn) a(fl'" In-I) 
a (II ... fn-I) . a(AI ••• An-I) 

(25) 

The last Jacobian in Eq. (25) is just the i = 0, 
j = 0 cofactor of the complete matrix of the Ali), 
and using the fact that this n X n matrix is real 
and orthogonal, with AjO) = (n)-l, it follows that 
this Jacobian never vanishes. 

The Jacobian aK/al has the form (2: denotes 
the sum 2:7:~ Ii) 

2 a n-I 
f: - 2:, il + 2:, ... [;-1 + (-)" 2: 

2 

f; - 2:, (26) 

2 n-l 

In-l + 2:, 1:-1 - 2:, ... r,:::: + (-)" 2: 
By multiplying the first column by powers of 2:, and adding to the other columns, 
assumes the form 

this determinant 

2 n-2 

J = II + 2: (fl + 2:)fl f~ - fl 2: ... II(f~-2 + (_),,-1 2:) 
(27) 

fn-I + 2: (fn-I + 2:)fn-1 

It is clear that each row has a factor of the form 
(f; + 2:). Thus J now becomes 

J = OJ (f. + L») 

----------------------------------
general term in the determinant in Eq. (28) has the 
form: I;(f~ + (- )k-l 2:k)/(f; + 2:), which, of 
course, is a polynomial.] With obvious manipUlations, 
the determinant in (28) may be put in the form of 
Vandermonde's determinant, that is 

xiI il ftC/I - L) 
1 In-I In-I(fn-I - L) 

... / 
(28) det in Eq. (28) = II (fi - fi), ... i<i 

[To be quite complete, it should be noted that the i,j=I,"·,n-l. (29) 
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The final result is that the Jacobian assumes a 
completely factored form. In order to express this 
most simply, we observe that the hi are traceless, 
so that the linear forms, ti + L:7:~ t;, in Eq. (28), 
are simply ti - tn. Hence the Jacobian is finally 

i, j = 1, ... n. (30) 

This is a product of !n(n - 1) linear forms in the 
components of the weight vector A, and noting the 
definition of the root vectors {ad in Eq. (9b), one 
sees that each linear form in Eq. (30), when set to 
zero, is precisely the hyperplane perpendicular to 
the root vector a = (ji). 

This demonstrates that the invariants defined by 
the J .. are a suitable basis for all the invariants of S, 
and it then follows that the In defined by Eqs. (17) 
are similarly a suitable basis for all the invariants 
of the group SUn. 
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APPENDIX A 

Let {W A} be defined by the equation 

Wc = L: [ABc]yAZB, (AI) 
AB 

where [ABC] are the symmetric coupling coefficients 
given in Eq. (16). It is the object of this appendix 
to show that {W A} is a vector, i.e., 

[XA' W B ] = L: (ABC)Wc , (A2) 
c 

if {Y A} and {Z A} are vectors. We must show there­
fore that 

L: [ABc]«DAE)YEZB + (DBE)yAZE) 
A.B.E 

L (DCE)[ABE] YAZB. (A3) 
A.B.E 

To demonstrate (A3) , it is sufficient to show that 
the coefficients of the independent terms in YZ 
vanish. Using the metric tensor to lower indices, 
and the symmetry of the various coefficients, this 
is equivalent to showing that the expression 

L {(DEC)[ABE] + (DE - A)[B - CE] 
E 

+ (DE - B)[A - CEll = 0 (A4) 

vanishes for all values of A, B, C, D. The proof will 
consist of examining the various possible cases 
separately. 

(a) Consider [X;, W nm ], i.e., D = j and c = nm 
in (A4). 

This is the simplest case, since it corresponds to 
the generalization of the "magnetic quantum­
number rule" that applies to the Wigner coefficients. 
In the case of (A4), this takes the form 

L (oo.) = L {(jEnm)[ABE] + (jE -A) 
E E 

X [B mnE] + (j E -B)[A mn Ell 

= (j mnnm)[AB mn] + (j A -A) 

X [B mn A] + (jB -B)[A mnB] 

[AB mn]{ (j mn nm) 

+ (j A - A) + (j B -B)}, (A5) 

and the term in brackets is now seen to vanish, 
whenever the coefficient [AB nm] is nonzero, i.e., 
whenever A + B + (mn) = O. 

Although the notation implies that n =;r!. m (that is, 
c = 1'), the result is clearly valid for n = m (that is, 
c = k). Thus [Xj, W k ] and [X;, W a ] have been 
shown to be correct. 

(b) Consider next the case [X a, W _ a], i.e., 
C = nm and D = mn, m =;r!. n. 

In this case, (A4) becomes 

(
A (i) _ A (i») 

~ ( ... ) = ~ n (2Ni [ABiJ 

+ L (mnE -A)[B mnE] 
E 

+ L (mnE -B)[A mnE]. (A6) 
E 

There are only two cases to examine: (1) A = j, 
B = k; and (2) A = -B =;r!. i, j. 

For the first case, (A6) becomes (discarding 
(2N)-!) 
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+ (A;:) - A~k»)[j mn nmJ 

= :E (A!i) - A~»[jkiJ 
i 

(A;;) - A~j»(A;:) + A!k» 
+ (2N)t 

(A~k) _ A!k»(A~) + A~il) 
+ (2N) 1 

Using the identity 

(A7) 

A;;lA~k) = L: (N /2)'A;:) [jkr] , (AS) 

(i mn nm)[ab j nm] + (j mn nm)[ab i nm] 

= (2N) -j :E (A~k) - A!kl) [ijk J (A13) 
k 

L: (k mn nm)[ijk]. 
k 

This latter result is seen to cancel with the remaining 
sum in (A12). 

For the fourth instance, A = 00, B = cd, and 
(All) becomes 

(i mn nm)[ab cd nm] 

the latter two groups of terms in (A7) are seen to + (2N)- i f o';;[cd i nb] - o:[cd i amJl 
cancel the first summation. 

For the second case A = -B = (rs) , r ~ s, 
the summation over i in (A6) is seen to have the 
form 

~ ( ... ) = ~ (A~i;2~)~~i))(A;i~2t)~!i)) 

= 2~ (0; + 0; - o~ - o~), (A9) 

using the properties of the A'S expressed by Eqs. (S). 
Consider now the first of the sums over E in (A6), 

that is, 

~ (mnE -A)[B mnEJ = 2~ (o~ - 0;). (AlO) 

This result, and a similar result for the second sum 
over E shows that (A6) again vanishes. 

These results show that [X a, W _ al is correctly 
given. 

(c) Consider now the case [X a, Wi], i.e., C = i 
and D = mn, m ~ n. For this case, (A6) assumes 
the form 

(i mn nm)[ABnm] + :E (mnE-A)[B iE] 
E 

+ :E (mn E-B)[A i EJ. (All) 
E 

There are four instances to verify: (1) A = j, 
B = k; (2) A = (ab), B = jj (3) A = j, B = abj 
and (4) A = 00, B = cd. Of these, the second and 
third are equivalent. The first is easily eliminated 
since it requires m = n, contrary to hypothesis. 
For the second case, (All) becomes 

(i mn nm) lab j nmJ + o-;"n :E (k nm mn) [jikJ 
k 

+ (j mn nm)[ab i nm]. (A12) 

Using the identity in (AS) once again, one finds 

+ (2N)-1 {o':[ab i nd] - o~[ab i em]}. 

Using the definitions of the coefficients, these terms 
are all seen to cancel out. 

(d) The final case to be treated involves [Xp, WaJ, 
{3 + a ? 0, Le., D = rs, C = mn. 
Just as in case (c) above, there are four instances 
to examine, of exactly the same type as in case (c). 
The method of proof is just the same also, and no 
new relations are required. It is of little value to 
repeat this substitution and evaluation, except for 
the assertion that it is found that (A6) once again 
vanishes. 

The form of these results makes one suspect there 
is a simple underlying reason which could lead to a 
more economical and satisfying proof. The fact that 
a totally symmetric and a totally antisymmetric 
form are being combined is presumably the basic 
cause for (A6) vanishing identically. On the other 
hand, this explicit proof has the advantage of 
illustrating several nice properties of the canonical 
form of the {hi, eal. 

APPENDIX B 

It is interesting to consider a little further the 
question as to why the invariants defined by the 
adjoint representation were unsuitable. For the SUa 
group, one can show (by direct calculation) that 
Eq. (6) defines only even-order invariants, and that 
only the second and sixth-order invariants are inde­
pendent, the fourth-order invariant of Eq. (6) being 
exactly the square of the second order (Casimir) 
invariant. Since (as given in Sec. 4 above), the 
canonical invariants for SUa are of the second and 
third order, the lack of odd-order invariants in 
Eq. (6) is suggestive. It suggests, loosely speaking, 
that the invariants of the adjoint group are some-
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how invariant under a reflection not in the original 
group G. 

This vague statement may be replaced by the 
more precise considerations18 of the group of auto­
morphisms of the group G. It is readily seen that an 
automorphism of the group G defines an auto­
morphism of the infinitesimal group, g, (whose ele­
ments are {X A }). One distinguishes the inner auto­
morphisms-those produced by conjugation-from 
the outer automorphisms (all others). Moreover, one 
may consider automorphisms in the neighborhood 
of the identical automorphism; these are called the 
infinitesimal automorphisms of g. Cartan 18 has 
proved: The infinitesimal automorphisms of semi­
simple infinitesimal group are all inner-infinitesimal 
automorphisms, x ~ [a, x] of g. 

This is relevant to the problem of constructing 
invariants in that there may exist outer automor-

phisms with the property that the elements {X A } 

are carried into their negatives. (For example, 
"time reversal" in Ra, J ~ - J; in SUa there exists 
an outer automorphism cyclically interchanging the 
E ""s is into their negatives.) The precise statement of 
the relevance of outer automorphisms is contained 
in a result given by Weyl/8 to the effect that the 
invariants of the characteristic polynomial of the 
adjoint representation [Eq. (6)] are also invariant 
under outer automorphisms of G.22 

Weyl went on to show that the adjoint group, A, 
is a subgroup of the automorphism group of G, 
namely the subgroup of those elements which can 
be connected with the unit element (the identical 
automorphism) . 

22 To be quite precise, Weyl stated this result only for 
the quadratic invariant, but it is clear that it is more general. 
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The time moments of the neutron time-energy distribution are derived under the following condi­
tions: infinite homogeneous moderator with no absorption, elastic scattering, and distribution of 
scattering angle independent of energy in center-of-mass frame. However, no assumption is made 
on the variation of the scattering cross section with energy. This is in contrast to previous papers 
in which a scattering cross section proportional to va (8 any real number) is assumed. The moments 
are derived in two ways: first, by means of Laplace transfonns, and then through the use of random 
functionals. Random functionals have not been previously employed in neutron moderation theory 
and they offer certain advantages which are discussed. 

INTRODUCTION 

A number of recent papers have been devoted 
to the analysis of the time-dependent slowing 

down of neutrons. Common to all these papers 
(and to ours) is the assumption of an infinite 
homogeneous moderator consisting of free neutrons 
at rest. For the case of no absorption, isotropic 
scattering in the center-of-mass (c.m.) frame, and 
a scattering cross section varying like v· (15 any real 
number). Waller! obtained an exact expression for 
the distribution function. Eriksson,2 using this 
expression, considered both the positive and negative 
time moments. Their method was based on the use 
of Laplace transforms. Guth and Inonii3 have 
recently applied the group-theoretical methods of 
Wigner4 to various problems in neutron moderation. 
They obtain (among others) results similar to those 
of Eriksson; however, somewhat weaker conditions 
are imposed on the distribution of the scattering 
angle (it need only be energy independent). 

The present paper is divided essentially into 
two parts. In Section I retaining the assump­
tions of Guth and Inonii (cf. below), but now 
allowing the scattering cross section to vary in an 
arbitrary way, expressions for the time moments 
are obtained. These formulas lend themselves 
rather readily to numerical calculation and also to 
asymptotic evaluation in the limit of large lethargies 
(low energy). The approach here is fairly standard, 
involving the judicious application of Laplace 
transforms to a transport equation. 

In Section II, we consider the use of stochastic 

* Present address: Bellcomm, Inc., Washington, D. C. 
I!. Waller (unpublished). 
2 K. E. Eriksson, Arkiv Fysik 16, 1 (1959). 
3 E. Guth and E. Inonii, J. Math. Phys. 2, 451 (1961). 
• E. Wigner, Phys. Rev. 94, 17 (1954). 

methods. We prove that finding the neutron time­
energy distribution function is equivalent to finding 
the distribution of a certain random functional. 
The formulation of problems in terms of random 
functionals represents a prominent trend in recent 
mathematical physics.s This trend, however, has not 
previously appeared in neutron moderation theory 
even though-at least in the present context-the 
use of random functionals has at least two important 
advantages: (1) The moments may be calculated in 
a very transparent way and the physical meaning 
of the results becomes very clear; (2) Side conditions 
on the energy (e.g. requiring the neutron to have a 
given energy after a specific collision) can be readily 
taken into account. 

I. THE TIME MOMENTS 

Consider an infinite, homogeneous moderator 
consisting of free atoms at rest, and suppose that 
at time t = 0, Q neutrons with the definite velocity 
Vo enter this medium. Through collisions with the 
atomic nuclei, these neutrons will slow down. 
Let v be the neutron velocity, and u = In (vo/v) 
its lethargy, so that for any neutron, u is a non­
decreasing function of time. 

The distribution of neutron lethargies at any 
time t ~ 0 is most conveniently described by means 
of F(u, t): the average number of neutron collisions 
per unit lethargy interval and time interval. Suppos­
ing that absorption can be neglected, and that all 
collisions are elastic with scattering isotropic in the 
C.m. frame, the collision density F(u, t) satisfies the 
following equation6

: 

Ii 1. M. Gelfand and A. M. Yaglom, J. Math. Phys. 
1, 48 (1960). 

6 R. E. Marshak, Rev. Mod. Phys. 19, 185 (1947). 
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F(u, t) = Qo(u)o(t) 

+ it dt' i U 

feu - u')e-:l;(U)v(t-t') F(u', t') du'. (1) 

~(u) is the macroscopic scattering cross section, 
and f(t:.u) = feu - u') is the probability density 
of the neutron lethargy increase t:.u at a collision: 

f(t:.tt) = 4M - - M - 1 
{

(M + 1)2 e-.i" ° < t:.u < In (M + 1)2 

o otherwise, (2) 

M being the atomic weight of the nuclei. 
Though (2) represents the physically most 

important case, it is not at all necessary that f(t:.u) 
have this form. All that we need is that f(t:.u) 
in fact depends only on t:.u and not on the lethargy 
of the neutron u' before collision (i.e. u' and 
t:.u should be independent random variables). 
For this to be true, it is enough that the distribution 
of the scattering angle in the C.m. frame be inde­
pendent of energy. 

It will be of use to introduce a function W(u, t) 
such that W(u, t) du is the average number of 
neutrons per unit time interval which have just 
acquired a lethargy in the range (u, u + du). 
Since it is these neutrons which at their next 
collision contribute to F(u, t), we have the relations 

F(u, t) = it e-:l;(,,)·(t-t')~(u)vW(u, t') dt', (3) 

W(u, t) = Qf(u)e-:l;"'t~ovo 

+ it dt' 10" feu - u')e-:l;(U'),'(t-t') 

X ~(u')v'W(u', t') du'. (4) 

In Eq. (4), v' is the velocity corresponding to 
lethargy u' (v' = voe!u'), and we are considering 
only those neutrons which have made at least 
one collision. 

We proceed to calculate the time moments 
(ti(U» given by 

. i oo 

tiF(u, t) dt 
(t'(u» = 00 . 

In F(u, t) dt 

(5) 

To this end, we define functions WW (u) by 

W(i)(u) = i oo 

tiW(u, t) dt (j = 0,1,2 ... ). (6) 

In particular, we denote W(O) (u) by simply W(u). 
This function gives the number of neutron collisions 

per unit lethargy interval and it enters in a crucial 
way in our analysis. It was first studied by Placzek7 

for the case of isotropic scattering in the c.m. frame. 
Let 'ir(u, r) be the Laplace transform with respect 

to r: 

~(u, r) = 1000 e-rtW(u, t) dt. (7) 

An integral equation for ~(u, r) can be obtained 
by the transform of Eq. (4), using the convolution 
theoremS and noting that 

1000 exp [~(u)vt]e-rt dt = r + ; (u)v . 

Thus, 

~(u, r) = Qf(u)~ovo/(r + ~ovo) 

+ 1u f( ') ~(u')v' (') d ' 
o u - u r + ~(u')v' ~ u ,r u. (8) 

It follows from (7) that the WW (u) and the 
derivatives of ~(u, r) are related by 

Let us denote, below, the Laplace transform of 
any function, say g(u), by £[g(u)]. Setting r = ° 
in (8) and using (9) for j = 0, one finds that 

W(u) = Qf(u) + i
U 

feu - u') W(u') du'. (10) 

Hence, if l{! = £[f(u)], we have, again using the 
convolution theorem in Eq. (10), 

£[W(u)] = Ql{! + l{!£[W(u)] 

£[W(u)] = Ql{!/(1 - l{!), (11) 

a well known result. 6 W(O (u) may be found by 
differentiating Eq. (9) with respect to r, setting r = 0 
and replacing ~, -a~/ar by W(u), W(l)(u), re­
spectively. Thus, 

WO)(u) = j(u)Q + r feu - u')WO) (u') du' 
~oVO Jo 

+ [" f( ') W(u') d ' Jo u - u ~(u')v' u, (12) 

or 

7 G. Placzek, Phys. Rev. 69, 423 (1946). 
8 I. Sneddon, Fourier Transforms (McGraw-Hill Book 

Company, Inc., New York, 1951.), p. 3. 
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Hence, 

(1)( )] cp Q + cp £[W(U)] (13) 
£ IW u = 1 - cp ~ovo 1 - cp ~(u)v' 

Recalling Eq. (11), we can invert (13) to obtain 

W Cl ) (u) = W(u) + l u 

W(u - ~') ~(u') du'. (14) 
~ovo 0 ~(u)v 

In exactly the same way we can obtain an expres­
sion for W(i)(u) in terms of W(u), W(l)(u), ... , 
WCH

) (u). Differentiating (9) j times, using Leibniz's 
rule to evaluate 

ir [ w(r, u) ] 
ar" ~(u)v + r ' 

making use of (8), and then taking Laplace trans­
forms, we have 

£[W(i)(u)1 = j!cpQ (_l_)i 
1 - cp ~ovo 

+ i: ~ ~ -£[(-+,)i-i W(i)(Uf )]. (15) 
i-O t. 1 cp ~(u)v 

(16) 

Returning to Eq. (3), we can find by means 
of (16), the moments (ti(u». Let us first note that 
if 8(u, r) is the Laplace transform of F(u, t) with 
respect to t; then 

~(u)v 
8(u, r) = ~(u)v + r w(r, u). (17) 

It follows at once from (17), on setting r = 0, that 

10'" F(u, t) dt = 1'" W(u, t) dt = W(u). (18) 

From (5), (8), and (18) we obtain the following 
expression for the moments (ti(U»: 

,. i j! W(i)(u) 
(t (u»W(u) = L: l [~( ) Y-i (19) 

.=0 t. u V 

Equations (16) and (19) give a set of recurrence 
relations from which the moments <ti(U» may be 
calculated. If the cross section has certain functional 
forms, it is possible to express the moments as 
inverse Laplace transforms of known quantities. 
Such is the case if ~(u)v '" e-AU (X any real number), 
for then 

and the recurrence relations (15) may be solved to 
obtain £[WW(u)] explicitly, and also £[(ti(u»W(u)]. 
If this is done, Eriksson's result is obtained. 

However, there does not seem to us to be any 
particular advantage in having such a representation 
even when it is possible. For numerical purposes, 
(19) is more convenient, unless one wanted to find 
a given moment without first obtaining the preceding 
ones. Furthermore, a rather complete treatment of 
the asymptotic behavior of (ti(U» for large u 
(low energy) can be given on the basis of Eq. (15). 
Since we intend to do this elsewhere, the details are 
not given here. 

II. THE USE OF RANDOM FUNCTIONALS 

The preceding analysis was based on the transport 
equation (1). We will now use directly the fact 
that neutron moderation is a stochastic process by 
regarding the time required by the neutron to 
slow down to a given lethargy as the sum of a 
number of elementary random events. 

First, we will need to reinterpret the functions 
F(u, t), W(u). This is because their definitions 
involved the phrase "number of neutrons" while 
here the quantities of interest are probability 
distributions over the ensemble of all possible ways 
a given neutron may slow down. 

Consider an interval of positive numbers I, 
of length L(I), and let P(I) be the probability that 
a neutron will, during its history, have a lethargy 
lying in I. If L(I) exceeds the maximum possible 
neutron lethargy gain at a collision, then obviously 
P(I) = 1; otherwise P(l) < 1. Now let the interval I 
contract to a point u, so that L(I) ~ 0 and let 

W(u) = lim P(l). 
L(lH L(I) 

It is not difficult to see from this definition that 
W(u) coincides with the function W(u) (with Q = 1) 
above. But, this can also be shown by noting 
that if L(I) is sufficiently small, the probability 
of a neutron having a lethargy in I after more than 
one collision is O[L(I)2] i.e., it is negligible. Hence, 
letting W,,(u) be the probability density of the 
neutron lethargy at the nth collision, 

'" 
P(l) = L(I) L W,,(u) = L(I)W(u). 

,,-1 

Since W1(u) = feu), one easily verifies that 

'" 
W(u) = L w .. (u) 

,,-I 

.£[(~(Uf(V') i-iWCi) (u)] is simply related to .£[W(1
) (u' )], satisfies Eq. (10). 
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F(u, t) is not a probability density since it is not 
nonnalized [f~ F(u, t) dt = W(u)]. But 

F(t I u) = F(u, t)/W(u) 

is, and it has the following meaning: F(t I u) is the 
probability density of the time that a neutron with 
lethargy U makes a collision, given that the neutron 
does, at some moment, have the lethargy u. The 
moments (t; (u» of Sec. I are, of course, identical to 
those of F(t I u) and these we proceed to find. 

Let t; be the time of the neutron's jth collision 
so that 

ti = Ili l + Ilt2 + ... + Illi' (20) 

where Ilt. = ti - t.- I • 

The Ilt. are random variables with probability 
density exp [-Vi-I 2: (Ui-I)t]Vi-I 2: (Ui_I); U. (v.) 
is the lethargy (velocity) just after the ith collision. 
Because of this dependence of the distribution of 
Ilti on Ui-I, tj is a function not only of Ilt.(i = 1, 
... , j) but also implicitly of ui(i = 1, ... j - 1). 
It will be convenient to make this latter dependence 
explicit in the following way. We introduce random 
variables IlTi related to Ilti by 

Ilt = IlT. 
• 2:(U.-I)V.-I 

(21) 

The IlTi then have identical distributions with 
densities e-tJ.<; independent of Ui, and (20) becomes 

t = ~ + ~ + ... + IlTj (22) 
, !.(uo)vo 2: (UI)VI 2:(U i - I)Vi-I· 

The variable IlTi has a simple physical meaning: 
By (21), it would be the time between the (i - l)st 
and ith collision in a fictitious medium with a 
cross section 2:(u) '" l/v (and with units chosen 
so that the proportionality constant is unity). 
In a similar way 

corresponds to ti • 

Writing IlTi = T. - T._l, SUbstituting in (22) 
and transfonning slightly, we obtain 

r" ;-1 [ 1 1 ] 
tf = 2:( ') - L ~( ) - 2:( ) ri· (23) 

Ui-l Vj - I i-I "- Ui Vi U.-I Vi-l 

Now, let us impose the requirement that Uj-l 

has some given value, say u, and introduce the 
function T.(U')(O ~ u' ~ u) defined by T.(U') = T. 
if Ui-I ~ U' < u •. T.(U') would therefore be in a 
medium with cross section l/v, the time at which a 
neutron first slows down to a lethargy u' or greater. 

The expression 

1: [_1 - _1 -JT; 
i-I 2: (Ui)V. 2:(Ui-I)V i - 1 

can be written as 

f d~' [~(~')v' }.(U') du', 

where we have used the fact that Uj_l = u. 
Finally, denote t; by t(u) to indicate that this is 

the time at which a neutron with lethargy U makes 
a collision; and similarly denote Tj by Tj(U). Then 
(23) becomes 

t(u) = ;~~?v - {' d~' [~(~')v'}'(U') du'. (24) 

Note that in Eq. (24), the variable giving the 
number of collisions made by the neutron no longer 
appears. Let us then drop the requirement that the 
lethargy U be attained at the jth collision, and 
merely demand that there be 80me collision just 
after which the neutron has the lethargy u. Then 
t(u) is the time at which such a neutron makes its 
next collision. Therefore, t(u) has the probability 
density F(t I u); T(U) is the analogous quantity 
for a medium with cross section l/v, [i.e., its dis­
tribution coincides with that of t(u) if ~(u) = l/v]. 

Let us find (t(u». From (24) we have 

(t(u» = ~~~j~ - lU d:' [2:(~')V' ]<T.(U'» du' 

_ (T(U» - (T.(U» _ (T.(O» 
- 2:( u)v 2:ovo 

(25) 

But T(U) - T.(U) would be, if 2:(u) = l/v, just 
the time inteval between the collision at which the 
lethargy u is attained and the next collision, so that 
(T(U) - T.(U» = 1. Similarly (T.(O» = 1. To obtain 

d~' (T.(U'», observe that 

dd, (T.(U'» = lim (T.(U' + h) - T.(u'»/h. 
u A-O 

But T.(U' + h) - T.(U') vanishes unless the 
neutron slows down past u' and past u' + h at 
different collisions; or equivalently, unless the 
neutron has after some collision, a lethargy in the 
interval (u', u' + h). Let us denote the probability 
of this last event for sufficiently small h by P(u' I u)h. 
Now, by the definition of W(u') it might appear that 
P(u' I u) = W(u'). However, this is not so since the 



                                                                                                                                    

450 MARTIN A. LEIBOWITZ 

condition that the neutron later have lethargy u 
must be imposed. Since the probability that a 
neutron with lethargy in the interval (u', u' + h) 
later has lethargy u is W(u - u')h, we see that 

P(u' I u) 
W(u' - u) W(u') 

W(u) 
(26) 

Noting that, if 1:(u) 1/v, the mean time between 
collisions is unity, it follows that 

..1:.- ( Cu'» = W(u' - u) W(u') . 
du' r. W(u) (27) 

Substituting this in Eq. (25) and comparing with 
(14), we see that our previous expression (19) for 
(t(u» is once again obtained. 

The higher moments of t(u) may be found 
similarly from (24). The calculations are simplified 
considerably if (24) is integrated by parts and 
the relations 

([r(u) - r.(u)n = lin!, 

(dr(u") drCu'» = P(u" I u')P(u' I u) CU" < u') 

are used. 
This last result generalizes immediately to 

products of n differentials dr(u). 

III. GENERALIZATIONS 

The preceding results may be generalized immedi­
ately to the case where an absorption cross section 
1: A (u) proportional to the scattering cross section 
1:(u) is assumed. We need only replace the quantity 
W(u) throughout by WA(u) where WA(u) satisfies 
the equation 

WA(u) = Af(u) + A l u 

feu - u')W(u') du' 
o ' 

with 

A ;:: 1:(u)/[1:(u) + 1:A(u)]. 

It is also easy to find (t(u», say, if we assume that 
the lethargy u is attained at a specific collision, 
e.g., the nth. The argument runs exactly the same 
as before except that the expression (26) for P(u' I u) 
must be changed to 

,,-1 

L Wk(U')Wn-k(u - U')/Wn(U) . 
k~l 

Finally, consider the case where the probability 
density of the lethargy increase Au, depends on the 
lethargy u' before collision. Denote this function 
by f(Au I u'). Then we can still find (t(u». To show 
this, the above method may be employed again, 
but the probability of a neutron with lethargy in 
Cu', u' + h) to later have lethargy u, no longer 
depends solely on the difference u - u'. If we call 
this probability W(u I u')h, then W(u I u') satisfies 
the following equation (generalizing Eq. lO): 

IV(u I u') = feu ! u') 

+ i~ feu - u" I u")W(u I u") du"; 

P(u' I u) is now 

W(u' I O)W(u I u')/W(u 10). 

The extension to higher moments is straight­
forward, though somewhat complicated. 
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